Skip to content

アプリケーション内で をクリックすると、お使いのDataRobotバージョンに関する全プラットフォームドキュメントにアクセスできます。

Runtime parameters for custom models

本機能の提供について

Runtime parameters for custom models are off by default. この機能を有効にする方法については、DataRobotの担当者または管理者にお問い合わせください。

Feature flag: Enable the Injection of Runtime Parameters for Custom Models

パブリックプレビュー版の機能です。モデルのメタデータを通じてカスタムモデルにランタイムパラメーターを追加でき、カスタムモデルのコードが再利用しやすくなりました

ランタイムパラメーターの定義

ランタイムパラメーターを定義するには、model-metadata.yamlに以下の runtimeParameterDefinitionsを追加します。

キー
fieldName ランタイムパラメーターの名前
type ランタイムパラメーターに含まれるデータタイプ:stringまたはcredential
defaultValue (オプション)ランタイムパラメーターのデフォルト文字列値(credentialタイプはデフォルト値をサポートしません)
description (オプション)ランタイムパラメーターの目的または内容の説明

備考

If you define a runtime parameter without specifying a defuaultValue, the default value is None.

 yaml title="Example: model-metadata.yaml"

name: runtime-parameter-example
type: inference
targetType: regression

runtimeParameterDefinitions:
- fieldName: my_first_runtime_parameter
  type: string
  description: My first runtime parameter.

- fieldName: runtime_parameter_with_default_value
  type: string
  defaultValue: Default
  description: A runtime parameter with a default value.

- fieldName: runtime_parameter_for_credentials
  type: credential
  description: A runtime parameter containing a dictionary of credentials. 

The credential runtime parameter type supports any credentialType value available in the DataRobot REST API. The credential information included depends on the credentialType, as shown in the examples below:

備考

For more information on the supported credential types, see the API reference documentation for credentials.

Credential Type Example
basic
basic:
  credentialType: basic
  description: string
  name: string
  password: string
  user: string
        
azure
azure:
  credentialType: azure
  description: string
  name: string
  azureConnectionString: string
        
gcp
gcp:
  credentialType: gcp
  description: string
  name: string
  gcpKey: string
        
s3
s3:
  credentialType: s3
  description: string
  name: string
  awsAccessKeyId: string
  awsSecretAccessKey: string
  awsSessionToken: string
        

Provide override values during local development

For local development with DRUM, you can specify a .yaml file containing the values of the runtime parameters. The values defined here override the defaultValue set in model-metadata.yaml:

 yaml title="Example: .runtime-parameters.yaml"

my_first_runtime_parameter: Hello, world.
runtime_parameter_with_default_value: Override the default value.
runtime_parameter_for_credentials:
  credentialType: basic
  name: credentials
  password: password1
  user: user1 

When using DRUM, the new --runtime-params-file option specifies the file containing the runtime parameter values:

 sh title="Example: --runtime-params-file"

drum score --runtime-params-file .runtime-parameters.yaml --code-dir model_templates/python3_sklearn --target-type regression --input tests/testdata/juniors_3_year_stats_regression.csv 

Import and use runtime parameters in custom code

To import and access runtime parameters, you can import the RuntimeParameters module in your code in custom.py:

 py title="Example: custom.py"

from datarobot_drum import RuntimeParameters


def mask(value, visible=3):
    return value[:visible] + ("*" * len(value[visible:]))


def transform(data, model):
    print("Loading the following Runtime Parameters:")
    parameter1 = RuntimeParameters.get("my_first_runtime_parameter")
    parameter2 = RuntimeParameters.get("runtime_parameter_with_default_value")
    print(f"\tParameter 1: {parameter1}")
    print(f"\tParameter 2: {parameter2}")

    credentials = RuntimeParameters.get("runtime_parameter_for_credentials")
    if credentials is not None:
        credential_type = credentials.pop("credentialType")
        print(
            f"\tCredentials (type={credential_type}): "
            + str({k: mask(v) for k, v in credentials.items()})
        )
    else:
        print("No credential data set")
    return data 

DataRobotでのランタイムパラメーターの表示と編集

When you add a model-metadata.yaml file with runtimeParameterDefinitions to DataRobot while creating a custom model, the Runtime Parameters section appears on the Assemble tab for that custom model. After you build the environment and create a new version, you can click View and Edit to configure the parameters:

備考

Each change to a runtime parameter creates a new minor version of the custom model.

After you test a model with runtime parameters in the Custom Model Workshop, you can navigate to the Test > Runtime Parameters to view the model's parameters:


更新しました April 19, 2023
Back to top