Skip to content

アプリケーション内で をクリックすると、お使いのDataRobotバージョンに関する全プラットフォームドキュメントにアクセスできます。

Monitoring job definitions

本機能の提供について

The monitoring jobs feature is off by default. この機能を有効にする方法については、DataRobotの担当者または管理者にお問い合わせください。

Feature flag: Monitoring Job Definitions

To integrate more closely with external data sources, monitoring job definitions allow DataRobot to monitor deployments running and storing feature data and predictions outside of DataRobot. たとえば、Snowflakeに接続して、関連するSnowflakeテーブルから元データを取得し、監視目的でDataRobotにデータを送信する監視ジョブを作成することができます。

監視ジョブAPI

この連携により、batchPredictionJobDefinitionsbatchPredictionsの既存の予測APIルートの機能が拡張され、batch_job_type:monitoringプロパティが追加されました。 この新しいプロパティによって、監視ジョブを作成できます。

Job definition routes

Operation and endpoint 説明
POST /api/v2/batchPredictionJobDefinitions/ Create a monitoring job definition given a payload.
GET /api/v2/batchPredictionJobDefinitions/ List all monitoring job definitions.
GET /api/v2/batchPredictionJobDefinitions/{monitoringJobDefinitionId} Retrieve the specified monitoring job definition.
DELETE /api/v2/batchPredictionJobDefinitions/{monitoringJobDefinitionId} Delete the specified monitoring job definition.
PATCH /api/v2/batchPredictionJobDefinitions/{monitoringJobDefinitionId} Update the specified monitoring job definition given a payload.

ヒント

When you list job definitions, you can use the batch_job_type search parameter to select jobs of the specified type; for example:

/api/v2/batchPredictionJobDefinitions/?batchJobType=monitoring&batchJobType=prediction

Batch prediction routes

Operation and endpoint 説明
POST /api/v2/batchPredictions/fromJobDefinition Launch (run now) a monitoring job from a monitoringJobDefinition. The payload should contain the monitoringJobDefinitionId.
GET /api/v2/batchPredictions/ List the full history of monitoring jobs, including running, aborted, and executed jobs.
GET /api/v2/batchPredictions/{monitoringJobId} Retrieve a specific monitoring job.
DELETE /api/v2/batchPredictions/{monitoringJobId} Abort a running monitoring job.

ヒント

When you list jobs, you can use the batch_job_type search parameter to select jobs of the specified type; for example:

/api/v2/batchPredictions/?batchJobType=monitoring&batchJobType=prediction

Monitoring job properties

プロパティ タイプ 説明
monitoringColumns.predictionsColumns str (Regression) The column in the data source containing prediction values. You must provide this field and/or actualsValueColumn.
monitoringColumns.predictionsColumns dict (Classification) The columns in the data source containing each prediction class. You must provide this field and/or actualsValueColumn.
monitoringColumns.associationIdColumn str The column in the data source which contains the association ID for predictions.
monitoringColumns.uniqueRowIdentifierColumns list Columns from the data source that will serve as unique identifiers for each row. これらの列は、各監視ステータスと対応するソース行を関連付けるために、データ送信先にコピーされます。
monitoringColumns.actualsValueColumn str The column in the data source which contains actual values. You must provide this field and/or predictionsColumns.
monitoringColumns.actedUponColumn str The column in the data source which contains the acted upon values.
monitoringColumns.actualsTimestampColumn str The column in the data source which contains the timestamps for actual values.
monitoringColumns.monitoredStatusColumn str The column in the data destination containing the monitoring status for each row.
Regression
{
  "batchJobType": "monitoring",
  "deploymentId": "<deployment_id>",
  "intakeSettings": {
      "type": "jdbc",
      "dataStoreId": "<data_store_id>",
      "credentialId": "<credential_id>",
      "table": "lending_club_regresion",
      "schema": "SCORING_CODE_UDF_SCHEMA",
      "catalog": "SANDBOX"
  },
  "outputSettings": {
      "type": "jdbc",
      "dataStoreId": "<data_store_id>",
      "table": "lending_club_regresion_out",
      "catalog": "SANDBOX",
      "schema": "SCORING_CODE_UDF_SCHEMA",
      "statementType": "insert",
      "createTableIfNotExists": true,
      "credentialId": "<credential_id>",
      "commitInterval": 10,
      "whereColumns": [],
      "updateColumns": []
  },
  "passthroughColumns": [],
  "monitoringColumns": {
      "predictionsColumns": "PREDICTION",
      "uniqueRowIdentifierColumns": ["id"],
      "monitoredStatusColumn": "monitored",
      "associationIdColumn": "id",
      "actualsValueColumn": "loan_amnt"
  }
  "schedule": {
      "minute": [ 0  ],
      "hour": [ 17   ],
      "dayOfWeek": ["*" ],
      "dayOfMonth": ["*" ],
      "month": [ "*” ]
  },
  "enabled": true
} 
Classification
{
  "batchJobType": "monitoring",
  "deploymentId": "<deployment_id>",
  "intakeSettings": {
      "type": "jdbc",
      "dataStoreId": "<data_store_id>",
      "credentialId": "<credential_id>",
      "table": "lending_club_regresion",
      "schema": "SCORING_CODE_UDF_SCHEMA",
      "catalog": "SANDBOX"
  },
  "outputSettings": {
      "type": "jdbc",
      "dataStoreId": "<data_store_id>",
      "table": "lending_club_regresion_out",
      "catalog": "SANDBOX",
      "schema": "SCORING_CODE_UDF_SCHEMA",
      "statementType": "insert",
      "createTableIfNotExists": true,
      "credentialId": "<credential_id>",
      "commitInterval": 10,
      "whereColumns": [],
      "updateColumns": []
  },
  "monitoringColumns": {
  "predictionsColumns": [
              {
                "className": "True",
                "columnName": "readmitted_True_PREDICTION"
              },
              {
                "className": "False",
                "columnName": "readmitted_False_PREDICTION"
              }
          ],
      "uniqueRowIdentifierColumns": ["id"],
      "monitoredStatusColumn": "monitored",
      "associationIdColumn": "id",
      "actualsValueColumn": "loan_amnt"
  }
  "schedule": {
      "minute": [ 0  ],
      "hour": [ 17   ],
      "dayOfWeek": ["*" ],
      "dayOfMonth": ["*" ],
      "month": [ "*” ]
  },
  "enabled": true
} 

監視ジョブUI

予測APIに加え、DataRobot UIを通じて、監視ジョブの定義を作成することができます。 You can then view and manage monitoring job definitions as you would any other job definition.

To create the monitoring jobs in DataRobot:

  1. Click Deployments and select a deployment from the inventory.

  2. On the selected deployment's Overview, click Job Definitions.

  3. On the Job Definitions page, click Monitoring Jobs, and then click Add Job Definition.

  4. On the New Monitoring Job Definition page, configure the following options:

    フィールド名 説明
    監視ジョブの定義名 Enter the name of the monitoring job that you are creating for the deployment.
    監視データの送信元 ソースのタイプを設定し、スコアリングするデータの接続を定義します。
    監視オプション Configure the monitoring options.
    データ送信先 (Optional) Configure the data destination options if you enable output monitoring.
    ジョブスケジュール Configure whether to run the job immediately and whether to schedule the job.
    監視ジョブの定義を保存 このボタンをクリックして、ジョブ定義を保存します。 このジョブをすぐに実行トグルがオンになっている場合、このボタンは予測ジョブ定義を保存して実行に変わります。 検定エラーがある場合、このボタンは無効になっています。

Set monitoring data source

Select a monitoring source, called an [intake adapter](intake-options, and complete the appropriate authentication workflow for the source type. 以下の接続タイプを選択すると、フィールドの説明が表示されます。

備考

接続の参照時に無効なアダプターは表示されません。

データベース接続

クラウドストレージ接続

データウェアハウス接続

その他

After you set your monitoring source, DataRobot validates that the data is applicable to the deployed model.

備考

DataRobot validates that a data source is compatible with the model when possible, but not in all cases. DataRobotは、AIカタログ、ほとんどのJDBC接続、Snowflake、Synapseで検証を行います。

Set monitoring options

When setting the monitoring options, the options available depend on the model type: regression or classification.

オプション 説明
関連付けID列 Identifies the column in the data source containing the association ID for predictions.
予測列 Identifies the column in the data source containing prediction values. You must provide this field and/or Actuals value column.
実測値列 Identifies the column in the data source containing actual values. You must provide this field and/or Predictions column.
実測値のタイムスタンプ列 Identifies the column in the data source containing the timestamps for actual values.
実行済みの列 Identifies the column in the data source containing the acted upon values.

オプション 説明
関連付けID列 Identifies the column in the data source containing the association ID for predictions.
予測列 Identifies the columns in the data source containing each prediction class. You must provide this field and/or Actuals value column.
実測値列 Identifies the column in the data source containing actual values. You must provide this field and/or Predictions column.
実測値のタイムスタンプ列 Identifies the column in the data source containing the timestamps for actual values.
実行済みの列 Identifies the column in the data source containing the acted upon values.

Set output monitoring and data destination options

After setting the prediction and actuals monitoring options, you can choose to enable Output monitoring status and configure the following options:

備考

It is not possible to disable the Output monitoring status option after you save a monitoring job definition. If you need to change the behavior of a saved job to remove output monitoring, create a new job definition.

オプション 説明
監視ステータス列 Identifies the column in the data destination containing the monitoring status for each row.
一意な行識別子列 Identifies the columns from the data source to serve as unique identifiers for each row. これらの列は、各監視ステータスと対応するソース行を関連付けるために、データ送信先にコピーされます。

With Output monitoring status enabled, you must also configure the Data destination options to specify where the monitored data results should be stored. Select a monitoring data destination, called an output adapter, and complete the appropriate authentication workflow for the destination type. 以下の接続タイプを選択すると、フィールドの説明が表示されます。

備考

接続の参照時に無効なアダプターは表示されません。

データベース接続

クラウドストレージ接続

データウェアハウス接続

その他

Schedule monitoring jobs

You can schedule monitoring jobs to run automatically on a schedule. When outlining a monitoring job definition, enable Run this job automatically on a schedule, then specify the frequency (daily, hourly, monthly, etc.) and time of day to define the schedule on which the job runs.

さらに詳細な指定をする場合は、高度なスケジューラーを使用するを選択します。 You can set the exact time (to the minute) you want to run the monitoring job.

After setting all applicable options, click Save monitoring job definition.


更新しました April 19, 2023
Back to top