エクスペリメントを管理¶
After modeling has started, DataRobot constructs a model Leaderboard to help learn and understand models and the data that built them. Also from the Leaderboard you can [add or retrain models]{0} and [create custom blueprints]{1} from the Leaderboard blueprint using built-in tasks and custom Python/R code.
Tiles on the left-side of the experiment Leaderboard provide all the tools necessary for managing predictive experiments. They are described in the following section:
タイル | 名前 | 説明 |
---|---|---|
![]() |
エクスペリメントの設定 | Opens the experiment setup summary page. |
![]() |
データプレビュー | Displays a more visual representation of the features in your dataset, including frequent values. |
![]() |
特徴量 | |
![]() |
特徴量セット | Allows you to create new feature lists, manage existing ones, and retrain all the models in an experiment on a different feature list. |
![]() |
データインサイト | Helps you track and visualize associations within your data using the Feature Associations insight. |
![]() |
ブループリントリポジトリ | Opens library of modeling blueprints available for a selected experiment. |
![]() |
モデル リーダーボード | |
![]() |
エクスペリメントのインサイト | Opens experiment-level insights for all models. |
![]() |
モデル比較 |