Skip to content

Availability information

The following sections describe support for the various elements that are part of GenAI model creation:

Trial users

See the considerations specific to the DataRobot free trial, including supported LLM base models.

LLM availability

Note the following when working with LLMs and the LLM gateway:

Availability of the LLM gateway is based on your pricing package. When enabled, the specific LLMs available via the LLM gateway are ultimately controlled by the organization administrator. If you see an LLM listed below but do not see it as a selection option when building LLM blueprints, contact your administrator. See also the LLM gateway service documentation for information on the DataRobot API endpoint that can be used to interface with external LLM providers. LLM availability through the LLM gateway service is restricted to non-government regions.

To integrate with LLMs not available through the LLM gateway service, see the notebook that outlines how to build and validate an external LLM integration using the DataRobot Python client.

All LLMs that are part of the LLM gateway are disabled by default and can only be enabled by the organization administrator. To enable an LLM for a user or org, search for LLM_ in the Feature access page; it will return the full list of available LLMs. These LLMs are supported for production usage in the DataRobot platform.

Additionally, an org admin can toggle Enable Fast-Track LLMs, also in Feature access, to gain access to the newest LLMs from external LLM providers. These LLMs have not yet gone through the full DataRobot testing and approval process and are not recommended for production usage.

Provider region availability information applies only to DataRobot's managed multi-tenant SaaS environments. It is not relevant for self-hosted (single-tenant SaaS, VPC, and on-premise) deployments where the provider region is dependent on the installation configuration.

The following tables list LLMs by provider.

In the tables below, which lists LLM availability by provider, note the following:

Indicator Explanation
Due to EU regulations, model access is disabled for Cloud users on the EU platform.
Due to JP regulations, model access is disabled for Cloud users on the JP platform.
Δ The model ID the playground uses for calling the LLM provider's services. This value is also the recommended value for the model parameter when using the Bolt-on Governance API for deployed LLM blueprints.
© Meta Llama is licensed under the Meta Llama 4 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.

Amazon Bedrock

Amazon Bedrock LLM availability
Type Max context window Max completion tokens Chat model ID Δ Provider region availability
Anthropic Claude 2.1 200,000 4,096 bedrock/anthropic.claude-v2:1
  • us-east-1
  • eu-central-1
  • ap-northeast-1
Anthropic Claude 3 Haiku 200,000 4,096 bedrock/anthropic.claude-3-haiku-20240307-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
  • ap-southeast-2
Anthropic Claude 3 Opus† 200,000 4,096 bedrock/anthropic.claude-3-opus-20240229-v1:0
  • us-west-2
Anthropic Claude 3 Sonnet 200,000 4,096 bedrock/anthropic.claude-3-sonnet-20240229-v1:0
  • us-east-1
  • eu-central-1
  • ap-southeast-2
Anthropic Claude 3.5 Haiku v1† 200,000 8,192 bedrock/anthropic.claude-3-5-haiku-20241022-v1:0
  • us-east-1
  • us-west-2
Anthropic Claude 3.5 Sonnet v1 200,000 8,192 bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
  • ap-northeast-1
Anthropic Claude 3.5 Sonnet v2† 200,000 8,192 bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0
  • us-east-1
  • us-west-2
  • ap-northeast-1
Anthropic Claude 3.7 Sonnet v1 200,000 131,072 bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
  • ap-northeast-1
Anthropic Claude Opus 4† 200,000 32,768 bedrock/anthropic.claude-opus-4-20250514-v1:0
  • us-east-1
  • us-west-2
Anthropic Claude Sonnet 4† 200,000 65,536 bedrock/anthropic.claude-sonnet-4-20250514-v1:0
  • us-east-1
  • us-west-2
  • ap-northeast-1
Anthropic Claude Opus 4.1† 200,000 32,000 bedrock/anthropic.claude-opus-4-1-20250805-v1:0
  • us-east-1
  • us-west-2
Cohere Command R† 128,000 4,096 bedrock/cohere.command-r-v1:0
  • us-east-1
  • us-west-2
Cohere Command R Plus† 128,000 4,096 bedrock/cohere.command-r-plus-v1:0
  • us-east-1
  • us-west-2
DeepSeek R1 v1† 128,000 32,768 bedrock/deepseek.r1-v1:0
  • us-east-1
  • us-west-2
Meta Llama 3 8B Instruct v1†© 8,192 2,048 bedrock/meta.llama3-8b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 3 70B Instruct v1†© 8,192 2,048 bedrock/meta.llama3-70b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 3.1 8B Instruct v1†© 128,000 8,192 bedrock/meta.llama3-1-8b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 3.1 70B Instruct v1†© 128,000 8,192 bedrock/meta.llama3-1-70b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 3.1 405B Instruct v1†© 128,000 4,096 bedrock/meta.llama3-1-405b-instruct-v1:0
  • us-west-2
Meta Llama 3.2 1B Instruct v1© 131,000 8,192 bedrock/meta.llama3-2-1b-instruct-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
Meta Llama 3.2 3B Instruct v1© 131,000 8,192 bedrock/meta.llama3-2-3b-instruct-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
Meta Llama 3.2 11B Instruct v1†© 128,000 8,192 bedrock/meta.llama3-2-11b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 3.2 90B Instruct v1†© 128,000 8,192 bedrock/meta.llama3-2-90b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 3.3 70B Instruct v1†© 128,000 8,192 bedrock/meta.llama3-3-70b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 4 Maverick 17B Instruct v1†© 1,000,000 8,192 bedrock/meta.llama4-maverick-17b-instruct-v1:0
  • us-east-1
  • us-west-2
Meta Llama 4 Scout 17B Instruct v1†© 3,500,000 8,192 bedrock/meta.llama4-scout-17b-instruct-v1:0
  • us-east-1
  • us-west-2
Mistral Mistral 7B Instruct v0† 32,768 8,192 bedrock/mistral.mistral-7b-instruct-v0:2
  • us-east-1
  • us-west-2
Mistral Mistral Large 2402 v1† 32,768 8,192 bedrock/mistral.mistral-large-2402-v1:0
  • us-east-1
  • us-west-2
Mistral Mistral Small 2402 v1† 32,768 8,192 bedrock/mistral.mistral-small-2402-v1:0
  • us-east-1
Mistral Mixtral 8x7B Instruct v0† 32,768 4,096 bedrock/mistral.mixtral-8x7b-instruct-v0:1
  • us-east-1
  • us-west-2
Amazon Nova Lite 300,000 10,000 bedrock/amazon.nova-lite-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
  • ap-northeast-1
Amazon Nova Micro 128,000 10,000 bedrock/amazon.nova-micro-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
  • ap-northeast-1
Amazon Nova Premier† 1,000,000 32,000 bedrock/amazon.nova-premier-v1:0
  • us-east-1
  • us-west-2
Amazon Nova Pro 300,000 10,000 bedrock/amazon.nova-pro-v1:0
  • us-east-1
  • us-west-2
  • eu-central-1
  • ap-northeast-1
Amazon Titan 8,192 8,192 bedrock/amazon.titan-text-express-v1
  • us-east-1
  • eu-central-1
  • ap-northeast-1
OpenAI gpt-oss-120b 131,072 128,000 bedrock/openai.gpt-oss-120b-1:0
  • us-west-2
OpenAI gpt-oss-20b 131,072 128,000 bedrock/openai.gpt-oss-20b-1:0
  • us-west-2

Anthropic

Anthropic LLM availability
Type Max context window Max completion tokens Chat model ID Δ
Anthropic Claude 3 Haiku 200,000 4,096 anthropic/claude-3-haiku-20240307
Anthropic Claude 3 Opus 200,000 4,096 anthropic/claude-3-opus-20240229
Anthropic Claude 3.5 Haiku 200,000 8,192 anthropic/claude-3-5-haiku-20241022
Anthropic Claude 3.5 Sonnet v1 200,000 8,192 anthropic/claude-3-5-sonnet-20240620
Anthropic Claude 3.5 Sonnet v2 200,000 8,192 anthropic/claude-3-5-sonnet-20241022
Anthropic Claude 3.7 Sonnet 200,000 64,000 anthropic/claude-3-7-sonnet-20250219
Anthropic Claude Opus 4 200,000 32,000 anthropic/claude-opus-4-20250514
Anthropic Claude Sonnet 4 200,000 64,000 anthropic/claude-sonnet-4-20250514

Azure OpenAI

Azure OpenAI LLM availability
Type Max context window Max completion tokens Chat model ID Δ Provider region availability
OpenAI GPT-4o mini 128,000 16,384 azure/gpt-4o-mini
  • eastus2
  • northcentralus
  • swedencentral
OpenAI GPT-4o 128,000 16,384 azure/gpt-4o-2024-11-20
  • eastus2
  • northcentralus
  • francecentral
  • swedencentral
OpenAI GPT-4 Turbo 128,000 4,096 azure/gpt-4-turbo
  • eastus2
  • swedencentral
OpenAI GPT-3.5 Turbo 16,385 4,096 azure/gpt-35-turbo
  • northcentralus
  • eastus2
  • eastus
  • francecentral
  • swedencentral
OpenAI o3-mini 200,000 100,000 azure/o3-mini
  • eastus2
  • northcentralus
  • francecentral
  • swedencentral
OpenAI o4-mini 200,000 100,000 azure/o4-mini
  • eastus2
  • francecentral
  • swedencentral
OpenAI o1 200,000 100,000 azure/o1
  • eastus2
  • northcentralus
  • francecentral
  • swedencentral
OpenAI o3 200,000 100,000 azure/o3
  • eastus2
  • francecentral
  • swedencentral
OpenAI o1-mini† 128,000 65,536 azure/o1-mini
  • eastus2
  • northcentralus
OpenAI GPT-5 400,000 128,000 azure/gpt-5-2025-08-07
  • eastus2
  • swedencentral
OpenAI GPT-5 mini 400,000 128,000 azure/gpt-5-mini-2025-08-07
  • eastus2
  • swedencentral
OpenAI GPT-5 nano 400,000 128,000 azure/gpt-5-nano-2025-08-07
  • eastus2
  • swedencentral

Google VertexAI

Google VertexAI LLM availability
Type Max context window Max completion tokens Chat model ID Δ Provider region availability
Claude 3 Haiku 200,000 4,096 vertex_ai/claude-3-haiku@20240307
  • us-east5
  • europe-west1
Claude 3 Opus† 200,000 4,096 vertex_ai/claude-3-opus@20240229
  • us-east5
Claude 3.5 Haiku† 200,000 8,192 vertex_ai/claude-3-5-haiku@20241022
  • us-east5
Claude 3.5 Sonnet 200,000 8,192 vertex_ai/claude-3-5-sonnet@20240620
  • us-east5
  • europe-west1
Claude 3.5 Sonnet v2 200,000 8,192 vertex_ai/claude-3-5-sonnet-v2@20241022
  • us-east5
  • europe-west1
Claude 3.7 Sonnet 200,000 64,000 vertex_ai/claude-3-7-sonnet@20250219
  • us-east5
  • europe-west1
Claude Opus 4† 200,000 32,000 vertex_ai/claude-opus-4@20250514
  • us-east5
Claude Sonnet 4 200,000 64,000 vertex_ai/claude-sonnet-4@20250514
  • us-east5
  • europe-west1
Claude Opus 4.1† 200,000 32,000 vertex_ai/claude-opus-4-1@20250805
  • us-east-1
  • us-west-2
Google Gemini 1.5 Flash 1,048,576 8,192 vertex_ai/gemini-1.5-flash-002
  • us-central1
  • us-west1
  • europe-west1
  • europe-west3
  • asia-northeast1
Google Gemini 1.5 Pro 1,048,576 8,192 vertex_ai/gemini-1.5-pro-002
  • us-central1
  • us-west1
  • europe-west1
  • europe-west3
  • asia-northeast1
Google Gemini 2.0 Flash 1,048,576 8,192 vertex_ai/gemini-2.0-flash-001
  • us-central1
  • us-east5
  • us-west1
  • europe-west1
  • europe-west4
Google Gemini 2.0 Flash Lite 1,048,576 8,192 vertex_ai/gemini-2.0-flash-lite-001
  • us-central1
  • us-east5
  • us-west1
  • europe-west1
  • europe-west4
Llama 3.1 8B Instruct MAAS† © 128,000 8,192 vertex_ai/meta/llama-3.1-8b-instruct-maas
  • us-central1
Llama 3.1 70B Instruct MAAS† © 128,000 8,192 vertex_ai/meta/llama-3.1-70b-instruct-maas
  • us-central1
Llama 3.1 405B Instruct MAAS† © 128,000 8,192 vertex_ai/meta/llama-3.1-405b-instruct-maas
  • us-central1
Llama 3.2 90B Vision Instruct† © 128,000 8,192 vertex_ai/meta/llama-3.2-90b-vision-instruct-maas
  • us-central1
Llama 3.3 70B Instruct† © 128,000 8,192 vertex_ai/meta/llama-3.3-70b-instruct-maas
  • us-central1
Llama 4 Maverick 17B 128E Instruct MAAS† © 524,288 8,192 vertex_ai/meta/llama-4-maverick-17b-128e-instruct-maas
  • us-east5
Llama 4 Scout 17B 16E Instruct MAAS† © 1,310,720 8,192 vertex_ai/meta/llama-4-scout-17b-16e-instruct-maas
  • us-east5
Mistral CodeStral 2501 32,000 32,000 vertex_ai/codestral-2501
  • us-central1
  • europe-west4
Mistral Large 2411 128,000 128,000 vertex_ai/mistral-large-2411
  • us-central1
  • europe-west4
OpenAI gpt-oss-120b 131,072 32,768 vertex_ai/openai/gpt-oss-120b-maas
  • us-central1
OpenAI gpt-oss-20b 131,072 32,768 vertex_ai/openai/gpt-oss-20b-maas
  • us-central1

Deprecated and retired LLMs

In the quickly advancing agentic AI landscape, LLMs are constantly improving, with new versions replacing older models. To address this, DataRobot's LLM deprecation process marks LLMs and LLM blueprints with a badge to indicate upcoming changes. The goal is to help protect experiments and deployments from unexpected removal of provider support. Note that retirement dates are set by the provider and are subject to change.

Badges for deprecated LLMs are shown in the LLM blueprint creation panel:

Or if built, affected LLM blueprints are marked with a warning or notice, with dates provided on hover:

Once LLM blueprints are built, they are displayed in the LLM blueprints tab. Deprecated or retired LLM blueprints are marked with a warning or notice, with dates provided on hover:

  • When an LLM is in the deprecation process, support for the LLM will be removed in 90 days. Badges and warnings are present, but functionality is not restricted.

  • When retired, assets created from the retired model are still viewable, but the creation of new assets is prevented. Retired LLMs cannot be used in single or comparison prompts.

Some evaluation metrics, for example faithfulness and correctness, use an LLM in their configuration. For those, messages are displayed when viewing or configuring the metrics, as well as in the prompt response.

If an LLM has been deployed, because DataRobot does not have control over the credentials used for the underlying LLM, the deployment will fail to return predictions. If this happens, replace the deployed LLM with a new model.

The following LLMs are currently, or will soon be, deprecated and removed:

LLM Retirement date
Anthropic Claude 2.1 Retired
Anthropic Claude 3 Sonnet Retired
Cohere Command Light Text v14 Retired
Cohere Command Text v14 Retired
Titan Retired
LLM Retirement date
GPT-3.5 Turbo October 15, 2025
GPT-3.5 Turbo 16k Retired
GPT-4 Retired
GPT-4 32k Retired
GPT-4 Turbo October 15, 2025
GPT-4o Mini August 16, 2025
o1-mini October 27, 2025
LLM Retirement date
Bison Retired
Gemini 1.5 Flash September 24, 2025
Gemini 1.5 Pro September 24, 2025

If an LLM has been deployed, because DataRobot does not have control over the credentials used for the underlying LLM, the deployment will fail to return predictions. If this happens, replace the deployed LLM with a new model.

Embeddings availability

DataRobot supports the following types of embeddings for encoding data; all are transformer models trained on a mixture of supervised and unsupervised data.

Embedding type Description Language
cl-nagoya/sup-simcse-ja-base A medium-sized language model from the Nagoya University Graduate School of Informatics ("Japanese SimCSE Technical Report"). It is a fast model for Japanese RAG.

  • Input Dimension*: 512
  • Output Dimension: 768
  • Number of Parameters: 110M
Japanese
huggingface.co/intfloat/multilingual-e5-base A medium-sized language model from Microsoft Research ("Weakly-Supervised Contrastive Pre-training on large MultiLingual corpus") used for multilingual RAG performance across multiple languages.

  • Input Dimension*: 512
  • Output Dimension: 768
  • Number of parameters: 278M
100+, see ISO 639
huggingface.co/intfloat/multilingual-e5-small A smaller-sized language model from Microsoft Research ("Weakly-Supervised Contrastive Pre-training on large MultiLingual corpus") used for multilingual RAG performance with faster performance than the MULTILINGUAL_E5_BASE. This embedding model is good for low-latency applications.

  • Input Dimension*: 512
  • Output Dimension: 384
  • Number of parameters: 118M
100+, see ISO 639
intfloat/e5-base-v2 A medium-sized language model from Microsoft Research ("Weakly-Supervised Contrastive Pre-training on large English Corpus") for medium-to-high RAG performance. With fewer parameters and a smaller architecture, it is faster than E5_LARGE_V2.

  • Input Dimension*: 512
  • Output Dimension: 768
  • Number of parameters: 110M
English
intfloat/e5-large-v2 A large language model from Microsoft Research ("Weakly-Supervised Contrastive Pre-training on large English Corpus") designed for optimal RAG performance. It is classified as slow due to its architecture and size.

  • Input Dimension*: 512
  • Output Dimension: 1024
  • Number of parameters: 335M
English
jinaai/jina-embedding-t-en-v1 A tiny language model trained using Jina AI's Linnaeus-Clean dataset. It is pre-trained on the English corpus and is the fastest, and default, embedding model offered by DataRobot.

  • Input Dimension*: 512
  • Output Dimension: 384
  • Number of parameters: 14M
English
jinaai/jina-embedding-s-en-v2 Part of the Jina Embeddings v2 family, this embedding model is the optimal choice for long-document embeddings (large chunk sizes, up to 8192).

  • Input Dimension*: 8192
  • Output Dimension: 384
  • Number of parameters: 33M
English
sentence-transformers/all-MiniLM-L6-v2 A small language model fine-tuned on a 1B sentence-pairs dataset. It is relatively fast and pre-trained on the English corpus. It is not recommend for RAG, however, as it was trained on old data.

  • Input Dimension*: 256
  • Output Dimension: 384
  • Number of parameters: 33M
English

* Input Dimension = max_sequence_length

Multilingual language support for E5-base and E5-small, see also ISO 639
 Supported languages:

      "Afrikaans",
        "Amharic",
        "Arabic",
        "Assamese",
        "Azerbaijani",
        "Belarusian",
        "Bulgarian",
        "Bengali",
        "Breton",
        "Bosnian",
        "Catalan",
        "Czech",
        "Welsh",
        "Danish",
        "German",
        "Greek",
        "English",
        "Esperanto",
        "Spanish",
        "Estonian",
        "Basque",
        "Persian",
        "Finnish",
        "French",
        "Western Frisian",
        "Irish",
        "Scottish Gaelic",
        "Galician",
        "Gujarati",
        "Hausa",
        "Hebrew",
        "Hindi",
        "Croatian",
        "Hungarian",
        "Armenian",
        "Indonesian",
        "Icelandic",
        "Italian",
        "Japanese",
        "Javanese",
        "Georgian",
        "Kazakh",
        "Khmer",
        "Kannada",
        "Korean",
        "Kurdish",
        "Kyrgyz",
        "Latin",
        "Lao",
        "Lithuanian",
        "Latvian",
        "Malagasy",
        "Macedonian",
        "Malayalam",
        "Mongolian",
        "Marathi",
        "Malay",
        "Burmese",
        "Nepali",
        "Dutch",
        "Norwegian",
        "Oromo",
        "Oriya",
        "Panjabi",
        "Polish",
        "Pashto",
        "Portuguese",
        "Romanian",
        "Russian",
        "Sanskrit",
        "Sindhi",
        "Sinhala",
        "Slovak",
        "Slovenian",
        "Somali",
        "Albanian",
        "Serbian",
        "Sundanese",
        "Swedish",
        "Swahili",
        "Tamil",
        "Telugu",
        "Thai",
        "Tagalog",
        "Turkish",
        "Uyghur",
        "Ukrainian",
        "Urdu",
        "Uzbek",
        "Vietnamese",
        "Xhosa",
        "Yiddish",
        "Chinese"

Sharing and permissions

The following table describes GenAI component-related user permissions. All roles (Consumer, Editor, Owner) refer to the user's role in the Use Case; access to various function are based on the Use Case roles. For example, because sharing is handled on the Use Case level, you cannot share only a vector database (vector databases do not define any sharing rules).

Permissions for GenAI functions
Function Use Case Consumer Use Case Editor Use Case Owner
Vector database
Vector database creators
Create vector database
Create vector database version
Edit vector database info
Delete vector database
Vector database non-creators
Edit vector database info
Delete vector database
Playground
Playground creators
Create playground
Rename playground
Edit playground description
Delete playground
Playground non-creators
Edit playground description
Delete playground
Playground → Assessment tab
Configure assessment
Enable/disable assessment metrics
Playground → Tracing tab
Download log
Upload to AI Catalog
LLM blueprint created by others (shared Use Case)
Configure
Send prompts (from Configuration)
Generate aggregated metrics
Create conversation (from Comparison)
Upvote/downvote responses
Star/favorite
Copy to new LLM blueprint
Delete
Register

Supported dataset types

When uploading datasets for use in creating a vector database, the supported formats are either .zip or .csv. Two columns are mandatory for the files—document and document_file_path. Additional metadata columns, up to 50, can be added for use in filtering during prompt queries. Note that for purposes of metadata filtering, document_file_path is displayed as source.

For .zip files, DataRobot processes the file to create a .csv version that contains text columns (document) with an associated reference ID (document_file_path) column. All content in the text column is treated as strings. The reference ID column is created automatically when the .zip is uploaded. All files should be either in the root of the archive or in a single folder inside an archive. Using a folder tree hierarchy is not supported.

Regarding file types, DataRobot provides the following support:

  • .txt documents

  • PDF documents

    • Text-based PDFs are supported.
    • To extract text from image-based PDFs, you must use the Python API client. Extracting text from image-based PDFs via the GUI is not fully supported.
    • Documents with mixed image and text content are supported; only the text is parsed.
    • Single documents consisting only of images result in empty documents and are ignored.
    • Datasets consisting of image-only documents (no text) are not processable.
  • .docx documents are supported but older .doc format is not supported.

  • .md documents, and the .markdown variant, are supported.

  • A mix of all supported document types in a single dataset is allowed.