Skip to content

NIM Containers – Resource bundles

Below is a quick-look bundle-sizing guide for the three managed-Kubernetes platforms. Each table shows, per cloud, how our standard bundle labels (M, L, XL, 2 XL, 3 XL, 4 XL) map to GPU nodes and the aggregate FP16 throughput and memory you can expect.

See also NIM validation on GPU bundles

EKS (AWS):

Bundle GPU Type GPU Count FP16 TFLOPS VRAM (GB) Total FP16 TFLOPS Total VRAM (GB) RAM (GB)
S T4 1 65 16 65 16 10
M A10 1 125 24 125 24 32
L L40S 1 181 48 181 48 32
XL A10 4 125 24 500 96 192
XXL L40S 4 181 48 724 192 384
3XL L40S 8 181 48 1448 384 1536
4XL A100 SXM 8 312 80 2496 640 1152

AKS (Azure):

Bundle GPU Type GPU Count FP16 TFLOPS VRAM (GB) Total FP16 TFLOPS Total VRAM (GB) RAM (GB)
M A10 1 125 24 125 24 440
L A10 2 125 24 250 48 880
XL A100 PCIe 1 312 80 312 80 220
2XL A100 PCIe 2 312 80 624 160 440
3XL A100 PCIe 4 312 80 1248 320 900
4XL A100 SXM 8 312 80 2496 640 1900

OCP (Oracle):

Bundle GPU Type GPU Count FP16 TFLOPS VRAM (GB) Total FP16 TFLOPS Total VRAM (GB) RAM (GB)
XL A100 SXM 1 312 80 312 80 80
2XL A100 SXM 2 312 80 624 160 160
3XL A100 SXM 4 312 80 1248 320 320
4XL A100 SXM 8 312 80 2496 640 640

OKE H100 (Oracle):

Bundle GPU Type GPU Count FP16 TFLOPS VRAM (GB) Total FP16 TFLOPS Total VRAM (GB) RAM (GB)
XL H100 SXM 1 1000 80 1000 80 80
2XL H100 SXM 2 1000 80 2000 160 160
3XL H100 SXM 4 1000 80 4000 320 320
4XL H100 SXM 8 1000 80 8000 640 640