Python client changelog¶
Reference the changes introduced to new versions of DataRobot's Python client.
Python client v3.3¶
New Features¶
- Added support for Python 3.11.
- Added new a library, "strenum", to add
StrEnum
support while maintaining backwards compatibility with Python 3.7-3.10. DataRobot does not use the nativeStrEnum
class in Python 3.11. - Added a new class
PredictionEnvironment
for interacting with DataRobot prediction environments. - Extended the advanced options available when setting a target to include new parameters:
modelGroupId
,modelRegimeId
, andmodelBaselines
(part of theAdvancedOptions
object). These parameters allow you to specify the user columns required to run time series models without feature derivation in OTV projects. -
Added a new method
PredictionExplanations.create_on_training_data
, for computing prediction explanation on training data. -
Added a new class
RegisteredModel
for interacting with DataRobot registered models to support the following methods: RegisteredModel.get
to retrieve a RegisteredModel object by ID.RegisteredModel.list
to list all registered models.RegisteredModel.archive
to permanently archive registered model.RegisteredModel.update
to update registered model.RegisteredModel.get_shared_roles
to retrieve access control information for registered model.RegisteredModel.share
to share a registered model.RegisteredModel.get_version
to retrieve a RegisteredModelVersion object by ID.RegisteredModel.list_versions
to list registered model versions.-
RegisteredModel.list_associated_deployments
to list deployments associated with a registered model. -
Added a new class
RegisteredModelVersion
for interacting with DataRobot registered model versions (also known as model packages) to support the following methods: RegisteredModelVersion.create_for_external
to create a new registered model version from an external model.RegisteredModelVersion.list_associated_deployments
to list deployments associated with a registered model version.RegisteredModelVersion.create_for_leaderboard_item
to create a new registered model version from a Leaderboard model.-
RegisteredModelVersion.create_for_custom_model_version
to create a new registered model version from a custom model version. -
Added a new method
Deployment.create_from_registered_model_version
to support creating deployments from a registered model version. -
Added a new method
Deployment.download_model_package_file
to support downloading model package files (.mlpkg) of the currently deployed model. -
Added support for retrieving document thumbnails:
DocumentThumbnail <datarobot.models.documentai.document.DocumentThumbnail>
-
DocumentPageFile <datarobot.models.documentai.document.DocumentPageFile>
-
Added support to retrieve document text extraction samples using:
DocumentTextExtractionSample
DocumentTextExtractionSamplePage
-
DocumentTextExtractionSampleDocument
-
Added new fields to
CustomTaskVersion
for controlling network policies. The new fields were also added to the response. This can be set withdatarobot.enums.CustomTaskOutgoingNetworkPolicy
. -
Added a new method
BatchPredictionJob.score_with_leaderboard_model
to run batch predictions using a Leaderboard model instead of a deployment. -
Set :
IntakeSettings
andOutputSettings
to useIntakeAdapters
andOutputAdapters
enum values respectively for the propertytype
. -
Added the method
Deployment.get_predictions_vs_actuals_over_time
to retrieve a deployment's predictions vs actuals over time data.
Bugfixes¶
- Payload property
subset
renamed tosource
inModel.request_feature_effect
- Fixed an issue where Context.trace_context was not being set from environment variables or DR config files.
Project.refresh
no longer setsProject.advanced_options
to a dictionary.- Fixed
Dataset.modify
to clarify behavior of when to preserve or clear categories. - Fixed an issue with enums in f-strings resulting in the enum class and property being printed instead of the enum property's value in Python 3.11 environments.
Deprecation Summary¶
Project.refresh
will no longer setProject.advanced_options
to a dictionary after version 3.5 is released. All interactions withProject.advanced_options
should be expected to be through theAdvancedOptions
class.
Experimental changes¶
- Added a new class,
VectorDatabase
, for interacting with DataRobot vector databases. VectorDatabase.get
retrieves a VectorDatabase object by ID.VectorDatabase.list
lists all VectorDatabases available to the user.VectorDatabase.create
creates a new VectorDatabase.VectorDatabase.create
allows you to use a validated deployment of a custom model as your own Vector Database.VectorDatabase.update
updates the name of a VectorDatabase.VectorDatabase.delete
deletes a single VectorDatabase.VectorDatabase.get_supported_embeddings
retrieves all supported embedding models.VectorDatabase.get_supported_text_chunkings
retrieves all supported text chunking configurations.-
VectorDatabase.download_text_and_embeddings_asset
download a parquet file with internal vector database data. -
Added a new class,
CustomModelVectorDatabaseValidation
, for validating custom model deployments for use as a vector database. CustomModelVectorDatabaseValidation.get
retrieves a CustomModelVectorDatabaseValidation object by ID.CustomModelVectorDatabaseValidation.get_by_values
retrieves a CustomModelVectorDatabaseValidation object by field values.CustomModelVectorDatabaseValidation.create
starts validation of the deployment.-
CustomModelVectorDatabaseValidation.revalidate
repairs an unlinked external vector database. -
Added a new class,
Playground
, for interacting with DataRobot generative AI playgrounds. Playground.get
retrieves a playground object by ID.Playground.list
lists all playgrounds available to the user.Playground.create
creates a new playground.Playground.update
updates the name and description of a playground.-
Playground.delete
deletes a single playground. -
Added a new class,
LLMDefinition
, for interacting with DataRobot generative AI LLMs. -
LLMDefinition.list
lists all LLMs available to the user. -
Added a new class,
LLMBlueprint
, for interacting with DataRobot generative AI LLM blueprints. LLMBlueprint.get
retrieves an LLM blueprint object by ID.LLMBlueprint.list
lists all LLM blueprints available to the user.LLMBlueprint.create
creates a new LLM blueprint.LLMBlueprint.create_from_llm_blueprint
creates a new LLM blueprint from an existing one.LLMBlueprint.update
updates an LLM blueprint.-
LLMBlueprint.delete
deletes a single LLM blueprint. -
Added a new class,
ChatPrompt
, for interacting with DataRobot generative AI chat prompts. ChatPrompt.get
retrieves a chat prompt object by ID.ChatPrompt.list
lists all chat prompts available to the user.ChatPrompt.create
creates a new chat prompt.-
ChatPrompt.delete
deletes a single chat prompt. -
Added a new class,
CustomModelLLMValidation
, for validating custom model deployments for use as a custom model LLM. CustomModelLLMValidation.get
retrieves a CustomModelLLMValidation object by ID.CustomModelLLMValidation.get_by_values
retrieves a CustomModelLLMValidation object by field values.CustomModelLLMValidation.create
starts validation of the deployment.-
CustomModelLLMValidation.revalidate
repairs an unlinked external custom model LLM. -
Added a new class,
ComparisonPrompt
, for interacting with DataRobot generative AI comparison prompts. ComparisonPrompt.get
retrieves a comparison prompt object by ID.ComparisonPrompt.list
lists all comparison prompts available to the user.ComparisonPrompt.create
creates a new comparison prompt.ComparisonPrompt.update
updates a comparison prompt.-
ComparisonPrompt.delete
deletes a single comparison prompt. -
Extended
UseCase
, adding two new fields to represent the count of vector databases and playgrounds. -
Added a new method,
ChatPrompt.create_llm_blueprint
, to create an LLM blueprint from a chat prompt. -
Added a new method,
CustomModelLLMValidation.delete
, to delete a custom model LLM validation record. -
Added a new method,
LLMBlueprint.register_custom_model
, for registering a custom model from a generative AI LLM blueprint.