Feature selection notebooks¶
DataRobot offers end-to-end code examples via Jupyter notebooks that help you find complete examples of common data science and machine learning workflows. Review the notebooks that outline feature selection below.
Topic | Describes... |
---|---|
Feature Importance Rank Ensembling | Learn about the benefits of Feature Importance Rank Ensembling (FIRE)—a method of advanced feature selection that uses a median rank aggregation of feature impacts across several models created during a run of Autopilot. |
Advanced feature selection with Python | Use Python to select features by creating aggregated Feature Impact. |
Updated October 11, 2023
Was this page helpful?
Great! Let us know what you found helpful.
What can we do to improve the content?
Thanks for your feedback!