Observability Accuracy¶
This page outlines the operations, endpoints, parameters, and example requests and responses for the Observability Accuracy.
GET /api/v2/deployments/{deploymentId}/accuracy/¶
Retrieve accuracy metric for a certain time period.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/accuracy/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
start | query | string,null(date-time) | false | Start of the period to retrieve monitoring data, defaults to 7 days ago from the end of the period. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
end | query | string,null(date-time) | false | End of the period to retrieve monitoring data, defaults to the next top of the hour. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
modelId | query | any | false | The ID of the models for which metrics are being retrieved. |
batchId | query | any | false | The id of the batch for which metrics are being retrieved. |
segmentAttribute | query | string,null | false | The name of the segment on which segment analysis is being performed. |
segmentValue | query | string,null | false | The value of the segmentAttribute to segment on. |
targetClass | query | any | false | Target class to filter out results. |
metric | query | string | false | Name of the metric to retrieve. Must be provided when using multiple modelId query params. |
deploymentId | path | string | true | Unique identifier of the deployment. |
Enumerated Values¶
Parameter | Value |
---|---|
metric | [AUC , Accuracy , Balanced Accuracy , F1 , FPR , FVE Binomial , FVE Gamma , FVE Multinomial , FVE Poisson , FVE Tweedie , Gamma Deviance , Gini Norm , Kolmogorov-Smirnov , LogLoss , MAE , MAPE , MCC , NPV , PPV , Poisson Deviance , R Squared , RMSE , RMSLE , Rate@Top10% , Rate@Top5% , TNR , TPR , Tweedie Deviance , WGS84 MAE , WGS84 RMSE ] |
Example responses¶
200 Response
{
"batchIds": [
"string"
],
"data": [
{
"baselineValue": 0,
"metricName": "string",
"modelId": "string",
"percentChange": 0,
"value": 0
}
],
"metrics": "\n {\"metrics\": {\n \"LogLoss\": {\n \"baselineValue\": 0.454221484838069,\n \"value\": 0.880778024500618,\n \"percentChange\": -93.91\n },\n \"AUC\": {\n \"baselineValue\": 0.8690358459556535,\n \"value\": 0.5294117647058824,\n \"percentChange\": -39.08\n },\n \"Kolmogorov-Smirnov\": {\n \"baselineValue\": 0.5753202944706626,\n \"value\": 0.4117647058823529,\n \"percentChange\": -28.43\n },\n \"Rate@Top10%\": {\n \"baselineValue\": 0.9603223806571606,\n \"value\": 1.0,\n \"percentChange\": 4.13\n },\n \"Gini Norm\": {\n \"baselineValue\": 0.7380716919113071,\n \"value\": 0.05882352941176472,\n \"percentChange\": -92.03\n }\n }\n ",
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"segmentAttribute": "string",
"segmentValue": ""
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Deployment accuracy metrics are retrieved. | AccuracyResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/deployments/{deploymentId}/accuracyMetrics/¶
Retrieve information about which accuracy metrics will be displayed and in what order.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/accuracyMetrics/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
deploymentId | path | string | true | Unique identifier of the deployment. |
Example responses¶
200 Response
{
"data": [
"AUC"
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Information on which accuracy metrics will be displayed and in what order. | AccuracyMetricList |
404 | Not Found | Deployment not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PUT /api/v2/deployments/{deploymentId}/accuracyMetrics/¶
Update accuracy metrics being returned in accuracy endpoint.
Code samples¶
curl -X PUT https://app.datarobot.com/api/v2/deployments/{deploymentId}/accuracyMetrics/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}" \
-d '{undefined}'
Body parameter¶
{
"data": [
"AUC"
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
deploymentId | path | string | true | Unique identifier of the deployment. |
body | body | AccuracyMetricUpdate | false | none |
Example responses¶
200 Response
{
"data": [
"AUC"
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The updated accuracy metrics list. | AccuracyMetricList |
404 | Not Found | Deployment not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/deployments/{deploymentId}/accuracyOverBatch/¶
Retrieve accuracy metric baseline, and metric value calculated for each batch.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/accuracyOverBatch/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
segmentAttribute | query | string,null | false | The name of the segment on which segment analysis is being performed. |
segmentValue | query | string,null | false | The value of the segmentAttribute to segment on. |
modelId | query | string | false | The id of the model for which metrics are being retrieved. |
batchId | query | any | false | The id of the batch for which metrics are being retrieved. |
metric | query | string | false | Accuracy metric being requested. |
deploymentId | path | string | true | Unique identifier of the deployment. |
Enumerated Values¶
Parameter | Value |
---|---|
metric | [AUC , Accuracy , Balanced Accuracy , F1 , FPR , FVE Binomial , FVE Gamma , FVE Poisson , FVE Tweedie , Gamma Deviance , Gini Norm , Kolmogorov-Smirnov , LogLoss , MAE , MAPE , MCC , NPV , PPV , Poisson Deviance , R Squared , RMSE , RMSLE , Rate@Top10% , Rate@Top5% , TNR , TPR , Tweedie Deviance ] |
Example responses¶
200 Response
{
"baselines": [
{
"metric": "string",
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
],
"buckets": [
{
"batchId": "string",
"batchName": "string",
"metric": "string",
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Retrieve accuracy metrics over batches for a deployment. | AccuracyOverBatchResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/deployments/{deploymentId}/accuracyOverSpace/¶
Retrieve accuracy metric baseline, and metric value calculated for each geospatial h3 hexagon.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/accuracyOverSpace/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
start | query | string,null(date-time) | false | Start of the period to retrieve monitoring data, defaults to 7 days ago from the end of the period. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
end | query | string,null(date-time) | false | End of the period to retrieve monitoring data, defaults to the next top of the hour. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
modelId | query | string | false | The ID of the model for which metrics are being retrieved. |
metric | query | string | false | Name of the metric. |
geoFeatureName | query | string | false | The name of the geospatial feature. |
deploymentId | path | string | true | Unique identifier of the deployment. |
Enumerated Values¶
Parameter | Value |
---|---|
metric | [AUC , Accuracy , Balanced Accuracy , F1 , FPR , FVE Binomial , FVE Gamma , FVE Multinomial , FVE Poisson , FVE Tweedie , Gamma Deviance , Gini Norm , Kolmogorov-Smirnov , LogLoss , MAD , MAE , MAPE , MCC , NPV , PPV , Poisson Deviance , R Squared , RMSE , RMSLE , Rate@Top10% , Rate@Top5% , TNR , TPR , Tweedie Deviance , WGS84 MAE , WGS84 RMSE ] |
Example responses¶
200 Response
{
"baselines": [
{
"hexagon": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
],
"buckets": [
{
"hexagon": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"value": 0
}
],
"geoFeatureName": "string",
"metric": "AUC",
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
}
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Accuracy over space | AccuracyOverSpaceResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/deployments/{deploymentId}/accuracyOverTime/¶
Retrieve accuracy metric baseline, and metric value calculated for each time bucket dividing a longer time period.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/accuracyOverTime/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
start | query | string,null(date-time) | false | Start of the period to retrieve monitoring data, defaults to 7 days ago from the end of the period. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
end | query | string,null(date-time) | false | End of the period to retrieve monitoring data, defaults to the next top of the hour. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
bucketSize | query | string(duration) | false | The time duration of a bucket. Needs to be multiple of one hour. Can not be longer than the total length of the period. If not set, a default value will be calculated based on the start and end time. |
modelId | query | any | false | The ID of the models for which metrics are being retrieved. |
metric | query | string | false | Name of the metric. |
segmentAttribute | query | string,null | false | The name of the segment on which segment analysis is being performed. |
segmentValue | query | string,null | false | The value of the segmentAttribute to segment on. |
targetClass | query | any | false | Target class to filter out results. |
deploymentId | path | string | true | Unique identifier of the deployment. |
Enumerated Values¶
Parameter | Value |
---|---|
metric | [AUC , Accuracy , Balanced Accuracy , F1 , FPR , FVE Binomial , FVE Gamma , FVE Multinomial , FVE Poisson , FVE Tweedie , Gamma Deviance , Gini Norm , Kolmogorov-Smirnov , LogLoss , MAD , MAE , MAPE , MCC , NPV , PPV , Poisson Deviance , R Squared , RMSE , RMSLE , Rate@Top10% , Rate@Top5% , TNR , TPR , Tweedie Deviance , WGS84 MAE , WGS84 RMSE ] |
Example responses¶
200 Response
{
"baseline": {
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
},
"baselines": [
{
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
],
"buckets": [
{
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
}
],
"metric": "AUC",
"modelId": "string",
"segmentAttribute": "string",
"segmentValue": "",
"summary": {
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
}
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Accuracy over time. | AccuracyOverTimeResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/deployments/{deploymentId}/predictionsVsActualsOverBatch/¶
Retrieve metrics about predictions and actuals, such as mean predicted & actual value, predicted & actual class distribution, over a specific set of batches.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/predictionsVsActualsOverBatch/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
segmentAttribute | query | string,null | false | The name of the segment on which segment analysis is being performed. |
segmentValue | query | string,null | false | The value of the segmentAttribute to segment on. |
modelId | query | string | false | The id of the model for which metrics are being retrieved. |
batchId | query | any | false | The id of the batch for which metrics are being retrieved. |
targetClass | query | any | false | Target class to filter out results. |
deploymentId | path | string | true | Unique identifier of the deployment. |
Example responses¶
200 Response
{
"baselines": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"buckets": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"batchId": "string",
"batchName": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"segmentAttribute": "string",
"segmentValue": ""
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Predictions vs actuals over batch info. | PredictionsVsActualsOverBatchResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/deployments/{deploymentId}/predictionsVsActualsOverSpace/¶
Retrieve predictions vs. actuals over space.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/predictionsVsActualsOverSpace/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
start | query | string,null(date-time) | false | Start of the period to retrieve monitoring data, defaults to 7 days ago from the end of the period. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
end | query | string,null(date-time) | false | End of the period to retrieve monitoring data, defaults to the next top of the hour. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
modelId | query | string | false | The ID of the model for which metrics are being retrieved. |
geoFeatureName | query | string | false | The name of the geospatial feature. |
targetClass | query | any | false | Target class to filter out results. |
deploymentId | path | string | true | Unique identifier of the deployment. |
Example responses¶
200 Response
{
"baselines": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"hexagon": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"buckets": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"hexagon": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"geoFeatureName": "string",
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"summary": {
"rowCountTotal": 0,
"rowCountWithActual": 0
}
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Predictions vs. actuals over space. | PredictionsVsActualsOverSpaceResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/deployments/{deploymentId}/predictionsVsActualsOverTime/¶
Retrieve metrics about predictions and actuals, such as mean predicted & actual value, predicted & actual class distribution, over a specific time range.
Code samples¶
curl -X GET https://app.datarobot.com/api/v2/deployments/{deploymentId}/predictionsVsActualsOverTime/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
start | query | string,null(date-time) | false | Start of the period to retrieve monitoring data, defaults to 7 days ago from the end of the period. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
end | query | string,null(date-time) | false | End of the period to retrieve monitoring data, defaults to the next top of the hour. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
bucketSize | query | string | false | Time duration of buckets |
segmentAttribute | query | string,null | false | The name of the segment on which segment analysis is being performed. |
segmentValue | query | string,null | false | The value of the segmentAttribute to segment on. |
modelId | query | any | false | The ID of the models for which metrics are being retrieved. |
targetClass | query | any | false | Target class to filter out results. |
deploymentId | path | string | true | Unique identifier of the deployment. |
Enumerated Values¶
Parameter | Value |
---|---|
bucketSize | [PT1H , P1D , P7D , P1M ] |
Example responses¶
200 Response
{
"baselines": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"buckets": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"segmentAttribute": "string",
"segmentValue": "",
"summary": {
"rowCountTotal": 0,
"rowCountWithActual": 0
}
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Predictions vs actuals over time info. | PredictionsVsActualsOverTimeResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
Schemas¶
AccuracyBatchBaselineBucket
{
"metric": "string",
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
metric | string | true | Name of the metric. | |
modelId | string | false | The id of the model for which metrics are being retrieved. | |
perClass | [AccuracyPerClass] | false | Accuracy metric for selected classes. | |
sampleSize | integer | true | Number of rows used to calculate the metric. | |
value | number,null | true | Accuracy metric value. |
AccuracyBatchBucket
{
"batchId": "string",
"batchName": "string",
"metric": "string",
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
batchId | string | true | ID of the batch. | |
batchName | string | true | Name of the batch. | |
metric | string | true | Name of the metric. | |
modelId | string | false | The id of the model for which metrics are being retrieved. | |
perClass | [AccuracyPerClass] | false | Accuracy metric for selected classes. | |
period | BatchPeriod | true | Time period of the batch. | |
sampleSize | integer | true | Number of rows used to calculate the metric. | |
value | number,null | true | Accuracy metric value. |
AccuracyLegacyTimeBucket
{
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
}
A bucket object containing metric info calculated. Deprecated and to be removed in v2.35, use summaries field with includeSummaries query param to get accuracy metrics computed over the whole time range.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
period | TimeRange | true | An object with the keys "start" and "end" defining the period. | |
sampleSize | integer,null | true | Number of predictions used to calculate the metric. | |
value | number,null | true | Value of the metric, null if no value. | |
valuePerClass | object,null | false | A dict keyed by class names with metric calculated for specific classes as values, if targetClass is set. Deprecated and to be removed in v2.35, use perClass instead. |
AccuracyMetric
{
"baselineValue": 0,
"metricName": "string",
"modelId": "string",
"percentChange": 0,
"value": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
baselineValue | number,null | true | Baseline value of the metric. | |
metricName | string | true | Name of the metric. | |
modelId | string | false | The id of the model for which metrics are being retrieved. | |
percentChange | number,null | true | Percent of change by comparing metric value to baseline, with metric direction taken into account. | |
value | number,null | true | Value of the metric. |
AccuracyMetricList
{
"data": [
"AUC"
]
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
data | [string] | true | maxItems: 15 |
List of Accuracy Metrics. |
AccuracyMetricUpdate
{
"data": [
"AUC"
]
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
data | [string] | true | maxItems: 15 |
List of Accuracy Metrics. |
AccuracyOverBatchResponse
{
"baselines": [
{
"metric": "string",
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
],
"buckets": [
{
"batchId": "string",
"batchName": "string",
"metric": "string",
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0
}
]
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
baselines | [AccuracyBatchBaselineBucket] | true | Accuracy metric training baseline. | |
buckets | [AccuracyBatchBucket] | true | Accuracy metric for batches that are requested, with non-existing batches omitted. |
AccuracyOverSpaceBaselineBucket
{
"hexagon": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
hexagon | string | true | h3 hexagon. | |
perClass | [AccuracyPerClass] | false | maxItems: 100 |
Accuracy metric values for selected classes, only available for multiclass deployments. |
sampleSize | integer | true | Number of rows used to calculate the metric. | |
value | number,null | true | Accuracy metric value. |
AccuracyOverSpaceBucket
{
"hexagon": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"value": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
hexagon | string | true | h3 hexagon. | |
perClass | [AccuracyPerClass] | false | maxItems: 100 |
Accuracy metric values for selected classes, only available for multiclass deployments. |
value | number,null | true | Accuracy metric value. |
AccuracyOverSpaceResponse
{
"baselines": [
{
"hexagon": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
],
"buckets": [
{
"hexagon": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"value": 0
}
],
"geoFeatureName": "string",
"metric": "AUC",
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
}
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
baselines | [AccuracyOverSpaceBaselineBucket] | true | maxItems: 1000 |
Baseline accuracy per geospatial hexagon. |
buckets | [AccuracyOverSpaceBucket] | true | maxItems: 1000 |
Accuracy per geospatial hexagon. |
geoFeatureName | string | true | The name of the geospatial feature. Segmented analysis must be enabled for the feature specified. | |
metric | string | true | The metric being retrieved. | |
modelId | string | false | The ID of the model for which metrics are being retrieved. | |
period | TimeRange | false | An object with the keys "start" and "end" defining the period. |
Enumerated Values¶
Property | Value |
---|---|
metric | [AUC , Accuracy , Balanced Accuracy , F1 , FPR , FVE Binomial , FVE Gamma , FVE Multinomial , FVE Poisson , FVE Tweedie , Gamma Deviance , Gini Norm , Kolmogorov-Smirnov , LogLoss , MAE , MAPE , MCC , NPV , PPV , Poisson Deviance , R Squared , RMSE , RMSLE , Rate@Top10% , Rate@Top5% , TNR , TPR , Tweedie Deviance , WGS84 MAE , WGS84 RMSE ] |
AccuracyOverTimeResponse
{
"baseline": {
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
},
"baselines": [
{
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
],
"buckets": [
{
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
}
],
"metric": "AUC",
"modelId": "string",
"segmentAttribute": "string",
"segmentValue": "",
"summary": {
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
}
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
baseline | AccuracyLegacyTimeBucket | true | A bucket object containing metric info calculated. Deprecated and to be removed in v2.35, use summaries field with includeSummaries query param to get accuracy metrics computed over the whole time range. | |
baselines | [AccuracyTimeBaselineBucket] | true | Accuracy metric training baseline. | |
buckets | [AccuracyTimeBucket] | true | Accuracy metric for requested models and time buckets. | |
metric | string | true | The metric being retrieved. | |
modelId | string | false | The id of the model for which metrics are being retrieved. Deprecated and to be removed in v2.35, use modelId in each baseline or bucket object. | |
segmentAttribute | string,null | false | The name of the segment on which segment analysis is being performed. | |
segmentValue | string,null | false | The value of the segmentAttribute to segment on. |
|
summary | AccuracyLegacyTimeBucket | true | A bucket object containing metric info calculated. Deprecated and to be removed in v2.35, use summaries field with includeSummaries query param to get accuracy metrics computed over the whole time range. |
Enumerated Values¶
Property | Value |
---|---|
metric | [AUC , Accuracy , Balanced Accuracy , F1 , FPR , FVE Binomial , FVE Gamma , FVE Multinomial , FVE Poisson , FVE Tweedie , Gamma Deviance , Gini Norm , Kolmogorov-Smirnov , LogLoss , MAE , MAPE , MCC , NPV , PPV , Poisson Deviance , R Squared , RMSE , RMSLE , Rate@Top10% , Rate@Top5% , TNR , TPR , Tweedie Deviance , WGS84 MAE , WGS84 RMSE ] |
AccuracyPerClass
{
"className": "string",
"value": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
className | string | true | Name of the class. | |
value | number,null | true | Value of the metric. |
AccuracyResponse
{
"batchIds": [
"string"
],
"data": [
{
"baselineValue": 0,
"metricName": "string",
"modelId": "string",
"percentChange": 0,
"value": 0
}
],
"metrics": "\n {\"metrics\": {\n \"LogLoss\": {\n \"baselineValue\": 0.454221484838069,\n \"value\": 0.880778024500618,\n \"percentChange\": -93.91\n },\n \"AUC\": {\n \"baselineValue\": 0.8690358459556535,\n \"value\": 0.5294117647058824,\n \"percentChange\": -39.08\n },\n \"Kolmogorov-Smirnov\": {\n \"baselineValue\": 0.5753202944706626,\n \"value\": 0.4117647058823529,\n \"percentChange\": -28.43\n },\n \"Rate@Top10%\": {\n \"baselineValue\": 0.9603223806571606,\n \"value\": 1.0,\n \"percentChange\": 4.13\n },\n \"Gini Norm\": {\n \"baselineValue\": 0.7380716919113071,\n \"value\": 0.05882352941176472,\n \"percentChange\": -92.03\n }\n }\n ",
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"segmentAttribute": "string",
"segmentValue": ""
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
batchIds | [string] | false | ID of the batches used to calculate accuracy metrics. | |
data | [AccuracyMetric] | true | maxItems: 100 |
Accuracy metric data. |
metrics | object | false | Accuracy metrics of the deployment. Deprecated and to be removed in v2.40; use data objects. | |
modelId | string | false | The id of the model for which metrics are being retrieved. Deprecated and to be removed in v2.40; use modelId in each data object. | |
period | TimeRange | false | An object with the keys "start" and "end" defining the period. | |
segmentAttribute | string,null | false | The name of the segment on which segment analysis is being performed. | |
segmentValue | string,null | false | The value of the segmentAttribute to segment on. |
AccuracyTimeBaselineBucket
{
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"sampleSize": 0,
"value": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
modelId | string | false | The id of the model for which metrics are being retrieved. | |
perClass | [AccuracyPerClass] | false | Accuracy metric values for selected classes, only available for multiclass deployments. | |
sampleSize | integer | true | Number of rows used to calculate the metric. | |
value | number,null | true | Accuracy metric value. |
AccuracyTimeBucket
{
"modelId": "string",
"perClass": [
{
"className": "string",
"value": 0
}
],
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"sampleSize": 0,
"value": 0,
"valuePerClass": {}
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
modelId | string | false | The id of the model for which metrics are being retrieved. | |
perClass | [AccuracyPerClass] | false | Accuracy metric values for selected classes, only available for multiclass deployments. | |
period | TimeRange | true | An object with the keys "start" and "end" defining the period. | |
sampleSize | integer | true | Number of rows used to calculate the metric. | |
value | number,null | true | Accuracy metric value. | |
valuePerClass | object,null | false | A dict keyed by class names with metric calculated for specific classes as values, if targetClass is set. Deprecated and to be removed in v2.35, use perClass instead. |
ActualClassDistribution
{
"className": "string",
"count": 0,
"percent": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
className | string | true | Name of the class. | |
count | integer | true | Count of actual rows labeled with a class in the bucket. | |
percent | number | true | Percent of actual rows labeled with a class in the bucket. |
BatchPeriod
{
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
}
Time period of the batch.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
end | string,null(date-time) | true | End time of the bucket | |
start | string,null(date-time) | true | Start time of the bucket |
PredictedClassDistribution
{
"className": "string",
"count": 0,
"percent": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
className | string | true | Name of the class. | |
count | integer | true | Count of prediction rows labeled with a class in the bucket. | |
percent | number | true | Percent of prediction rows labeled with a class in the bucket. |
PredictionsVsActualsBaseline
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
actualClassDistribution | [ActualClassDistribution] | false | Class distribution for all actuals in the bucket, only for classification deployments. | |
meanActualValue | number,null | false | Mean actual value for all rows in the bucket, only for regression deployments. | |
meanPredictedValue | number,null | false | Mean predicted value for all rows in the bucket, only for regression deployments. | |
modelId | string | true | ID of the model. | |
predictedClassDistribution | [PredictedClassDistribution] | false | Class distribution for all rows with actual in the bucket, only for classification deployments. | |
rowCountTotal | integer | true | Number of rows in the bucket. | |
rowCountWithActual | integer | true | Number of rows with actual in the bucket. |
PredictionsVsActualsBatchBucket
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"batchId": "string",
"batchName": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
actualClassDistribution | [ActualClassDistribution] | false | Class distribution for all actuals in the bucket, only for classification deployments. | |
batchId | string | true | ID of the batch. | |
batchName | string | true | Name of the batch. | |
meanActualValue | number,null | false | Mean actual value for all rows in the bucket, only for regression deployments. | |
meanPredictedValue | number,null | false | Mean predicted value for all rows in the bucket, only for regression deployments. | |
modelId | string | true | ID of the model. | |
period | BatchPeriod | true | Time period of the batch. | |
predictedClassDistribution | [PredictedClassDistribution] | false | Class distribution for all rows with actual in the bucket, only for classification deployments. | |
rowCountTotal | integer | true | Number of rows in the bucket. | |
rowCountWithActual | integer | true | Number of rows with actual in the bucket. |
PredictionsVsActualsOverBatchResponse
{
"baselines": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"buckets": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"batchId": "string",
"batchName": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"segmentAttribute": "string",
"segmentValue": ""
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
baselines | [PredictionsVsActualsBaseline] | true | Predictions vs actuals baselines. | |
buckets | [PredictionsVsActualsBatchBucket] | true | Predictions vs actuals buckets. | |
segmentAttribute | string,null | false | The name of the segment on which segment analysis is being performed. | |
segmentValue | string,null | false | The value of the segmentAttribute to segment on. |
PredictionsVsActualsOverSpaceBucket
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"hexagon": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
actualClassDistribution | [ActualClassDistribution] | false | maxItems: 100 |
For classification deployments, the class distribution for all actuals in the bucket. |
hexagon | string | true | The H3 geospatial indexing hexagon. | |
meanActualValue | number,null | false | For regression deployments, the mean actual value of all rows in the bucket. | |
meanPredictedValue | number,null | false | For regression deployments, the mean predicted value of all rows in the bucket. | |
predictedClassDistribution | [PredictedClassDistribution] | false | maxItems: 100 |
For classification deployments, the class distribution for all prediction rows in the bucket with associated actuals. |
rowCountTotal | integer | true | The number of rows in the bucket. | |
rowCountWithActual | integer | true | The number of prediction rows in the bucket with associated actuals. |
PredictionsVsActualsOverSpaceResponse
{
"baselines": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"hexagon": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"buckets": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"hexagon": "string",
"meanActualValue": 0,
"meanPredictedValue": 0,
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"geoFeatureName": "string",
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"summary": {
"rowCountTotal": 0,
"rowCountWithActual": 0
}
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
baselines | [PredictionsVsActualsOverSpaceBucket] | true | maxItems: 1000 |
The predictions vs. actuals over space baselines. |
buckets | [PredictionsVsActualsOverSpaceBucket] | true | maxItems: 1000 |
The predictions vs. actuals over space buckets. |
geoFeatureName | string | true | The name of the geospatial feature. | |
modelId | string | false | The ID of the model for which metrics are being retrieved. | |
period | TimeRange | false | An object with the keys "start" and "end" defining the period. | |
summary | PredictionsVsActualsSummaryBucket | true | Predictions vs actuals summary. |
PredictionsVsActualsOverTimeResponse
{
"baselines": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"buckets": [
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
],
"segmentAttribute": "string",
"segmentValue": "",
"summary": {
"rowCountTotal": 0,
"rowCountWithActual": 0
}
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
baselines | [PredictionsVsActualsBaseline] | true | Predictions vs actuals baselines. | |
buckets | [PredictionsVsActualsTimeBucket] | true | Predictions vs actuals buckets. | |
segmentAttribute | string,null | false | The name of the segment on which segment analysis is being performed. | |
segmentValue | string,null | false | The value of the segmentAttribute to segment on. |
|
summary | PredictionsVsActualsSummaryBucket | true | Predictions vs actuals summary. |
PredictionsVsActualsSummaryBucket
{
"rowCountTotal": 0,
"rowCountWithActual": 0
}
Predictions vs actuals summary.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
rowCountTotal | integer | true | Number of rows for all buckets. | |
rowCountWithActual | integer | true | Number of rows with actual for all buckets. |
PredictionsVsActualsTimeBucket
{
"actualClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"meanActualValue": 0,
"meanPredictedValue": 0,
"modelId": "string",
"period": {
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
},
"predictedClassDistribution": [
{
"className": "string",
"count": 0,
"percent": 0
}
],
"rowCountTotal": 0,
"rowCountWithActual": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
actualClassDistribution | [ActualClassDistribution] | false | Class distribution for all actuals in the bucket, only for classification deployments. | |
meanActualValue | number,null | false | Mean actual value for all rows in the bucket, only for regression deployments. | |
meanPredictedValue | number,null | false | Mean predicted value for all rows in the bucket, only for regression deployments. | |
modelId | string | true | ID of the model. | |
period | BatchPeriod | true | Time period of the batch. | |
predictedClassDistribution | [PredictedClassDistribution] | false | Class distribution for all rows with actual in the bucket, only for classification deployments. | |
rowCountTotal | integer | true | Number of rows in the bucket. | |
rowCountWithActual | integer | true | Number of rows with actual in the bucket. |
TimeRange
{
"end": "2019-08-24T14:15:22Z",
"start": "2019-08-24T14:15:22Z"
}
An object with the keys "start" and "end" defining the period.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
end | string,null(date-time) | false | End of the period to retrieve monitoring data, defaults to the next top of the hour. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |
|
start | string,null(date-time) | false | Start of the period to retrieve monitoring data, defaults to 7 days ago from the end of the period. Note: this field only accepts top of the hour RFC3339 datetime strings, for example: 2019-08-01T00:00:00Z . |