Vector Databases (GenAI)¶
This page outlines the operations, endpoints, parameters, and example requests and responses for the Vector Databases (GenAI).
GET /api/v2/genai/vectorDatabases/¶
List vector databases.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
useCaseId | query | any | false | Only retrieve the vector databases linked to these use case IDs. |
playgroundId | query | string | false | Only retrieve the vector databases linked to this playground ID. |
familyId | query | string | false | Only retrieve the vector databases linked to this family ID. |
parentsOnly | query | boolean | false | If true , only retrieve (root) parent vector databases. The default is false . |
offset | query | integer | false | Skip the specified number of values. |
limit | query | integer | false | Retrieve only the specified number of values. |
search | query | any | false | Only retrieve the vector databases with names matching the search query. |
sort | query | any | false | Apply this sort order to the results. Valid options are "name", "creationDate", "creationUserId", "embeddingModel", "datasetId", "chunkingMethod", "chunksCount", "size", "userName", "datasetName", "playgroundsCount", "source". Prefix the attribute name with a dash to sort in descending order, e.g., sort=-creationDate. |
completedOnly | query | boolean | false | If true , only retrieve the vector databases that have finished building. The default is false . |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Vector databases successfully retrieved. | ListVectorDatabasesResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/genai/vectorDatabases/¶
Create a new vector database.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/genai/vectorDatabases/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}" \
-d '{CreateVectorDatabaseRequest}'
Body parameter¶
{
"chunkingParameters": {
"chunkOverlapPercentage": 50,
"chunkSize": 0,
"chunkingMethod": "recursive",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"isSeparatorRegex": false,
"separators": [
"string"
]
},
"datasetId": "string",
"name": "string",
"parentVectorDatabaseId": "string",
"updateDeployments": false,
"updateLlmBlueprints": false,
"useCaseId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | CreateVectorDatabaseRequest | true | none |
Example responses¶
202 Response
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Vector database creation job successfully accepted. Follow the Location header to poll for job execution status. |
VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/genai/vectorDatabases/fromCustomModelDeployment/¶
Create a new vector database from a custom model deployment.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/genai/vectorDatabases/fromCustomModelDeployment/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}" \
-d '{undefined}'
Body parameter¶
{
"name": "string",
"useCaseId": "string",
"validationId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | any | true | none |
Example responses¶
201 Response
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
201 | Created | Custom model hosted vector database successfully added. Full representation is available in the response body. | VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/supportedEmbeddings/¶
List the supported embedding models for building vector databases.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/supportedEmbeddings/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
datasetId | query | string | false | Only retrieve the embedding models compatible with this dataset ID. |
useCaseId | query | string | false | If specified, include the custom model embeddings available for this use case ID. |
Example responses¶
200 Response
{
"customModelEmbeddingValidations": [
{
"id": "string",
"name": "string"
}
],
"defaultEmbeddingModel": "string",
"embeddingModels": [
{
"description": "string",
"embeddingModel": "intfloat/e5-large-v2",
"languages": [
"Afrikaans"
],
"maxSequenceLength": 0
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Supported embeddings successfully retrieved. | SupportedEmbeddingsResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/supportedRetrievalSettings/¶
List all vector database retrieval settings that are supported by LLM blueprints.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/supportedRetrievalSettings/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Example responses¶
200 Response
{
"settings": [
{
"default": null,
"description": "string",
"enum": [
"string"
],
"groupId": "string",
"maximum": 0,
"minimum": 0,
"name": "string",
"settings": [
{}
],
"title": "string",
"type": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Supported vector database retrieval settings successfully retrieved. | SupportedRetrievalSettingsResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/supportedTextChunkings/¶
List the supported text chunking methods for building vector databases.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/supportedTextChunkings/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Example responses¶
200 Response
{
"textChunkingConfigs": [
{
"defaultMethod": "string",
"embeddingModel": "intfloat/e5-large-v2",
"methods": [
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string",
"title": "Recursive"
}
]
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Supported text chunking methods successfully retrieved. | SupportedTextChunkingResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
DELETE /api/v2/genai/vectorDatabases/{vectorDatabaseId}/¶
Delete an existing vector database.
Code samples¶
# You can also use wget
curl -X DELETE https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to delete. |
Example responses¶
422 Response
{
"detail": [
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | Vector database successfully deleted. | None |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/{vectorDatabaseId}/¶
Retrieve an existing vector database.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to retrieve. |
Example responses¶
200 Response
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Vector database successfully retrieved. | VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/genai/vectorDatabases/{vectorDatabaseId}/¶
Edit an existing vector database.
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}" \
-d '{undefined}'
Body parameter¶
{
"name": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to edit. |
body | body | EditVectorDatabaseRequest | true | none |
Example responses¶
200 Response
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Vector database successfully updated. | VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/genai/vectorDatabases/{vectorDatabaseId}/datasetExportJobs/¶
Export an existing vector database as dataset to AI catalog.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/datasetExportJobs/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to retrieve. |
Example responses¶
202 Response
{
"exportDatasetId": "string",
"jobId": "string",
"vectorDatabaseId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Vector database export job successfully accepted.Follow the Location header to poll for job execution status. |
VectorDatabaseExportResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/{vectorDatabaseId}/latestVersion/¶
Retrieve the latest vector database within the family associated with this vector database.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/latestVersion/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to retrieve the latest version. |
completedOnly | query | boolean | false | If true , only retrieve the vector databases that have finished building. The default is false . |
Example responses¶
200 Response
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Latest vector database version successfully retrieved. | VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/{vectorDatabaseId}/supportedSyntheticDatasetGenerationLanguages/¶
List the languages for synthetic dataset generation that are supported by this vector database.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/supportedSyntheticDatasetGenerationLanguages/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to retrieve supported languages. |
Example responses¶
200 Response
{
"recommendedLanguage": "string",
"supportedLanguages": [
"string"
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Supported languages successfully retrieved. | SupportedLanguagesResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/{vectorDatabaseId}/textAndEmbeddings/¶
Retrieve the text chunk and embeddings asset for an existing vector database.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/textAndEmbeddings/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to retrieve the assets for. |
Example responses¶
200 Response
null
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Text and embeddings asset successfully retrieved. | Inline |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
Response Schema¶
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
Schemas¶
ChunkingMethodNames
"recursive"
ChunkingMethodNames
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ChunkingMethodNames | string | false | Supported names of text chunking methods. |
Enumerated Values¶
Property | Value |
---|---|
ChunkingMethodNames | [recursive , semantic ] |
ChunkingMethodNamesTitle
"Recursive"
ChunkingMethodNamesTitle
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ChunkingMethodNamesTitle | string | false | Supported user-facing friendly ames of text chunking methods. |
Enumerated Values¶
Property | Value |
---|---|
ChunkingMethodNamesTitle | [Recursive , Semantic ] |
ChunkingParameterTypes
"int"
ChunkingParameterTypes
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ChunkingParameterTypes | string | false | Supported parameter data types for text chunking parameters. |
Enumerated Values¶
Property | Value |
---|---|
ChunkingParameterTypes | [int , list[str] , bool ] |
ChunkingParameters
{
"chunkOverlapPercentage": 50,
"chunkSize": 0,
"chunkingMethod": "recursive",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"isSeparatorRegex": false,
"separators": [
"string"
]
}
ChunkingParameters
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
chunkOverlapPercentage | integer¦null | false | maximum: 50 minimum: 0 |
The chunk overlap percentage to use for text chunking. |
chunkSize | integer¦null | false | The chunk size to use for text chunking (measured in tokens). | |
chunkingMethod | ChunkingMethodNames¦null | false | The text chunking method to use. | |
embeddingModel | EmbeddingModelNames¦null | false | The name of the embedding model to use. If omitted, DataRobot will choose the default embedding model automatically. | |
embeddingValidationId | string¦null | false | The validation ID of the custom embedding model (in case of using a custom model for embeddings). | |
isSeparatorRegex | boolean | false | Whether the text chunking separator uses a regular expression. | |
separators | [string]¦null | false | maxItems: 9 |
The list of separators to use for text chunking. |
CreateCustomModelVectorDatabaseFromDeploymentRequest
{
"deploymentId": "string",
"modelId": "string",
"name": "string",
"promptColumnName": "string",
"targetColumnName": "string",
"useCaseId": "string"
}
CreateCustomModelVectorDatabaseFromDeploymentRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
deploymentId | string | true | The ID of the custom model deployment. | |
modelId | string | true | The ID of the model in the custom model deployment. | |
name | string | true | maxLength: 5000 minLength: 1 minLength: 1 |
The name of the vector database. |
promptColumnName | string | true | maxLength: 5000 |
The name of the column the custom model uses for prompt text input. |
targetColumnName | string | true | maxLength: 5000 |
The name of the column the custom model uses for prediction output. |
useCaseId | string | true | The ID of the use case to link the vector database to. |
CreateCustomModelVectorDatabaseFromValidationIdPayload
{
"name": "string",
"useCaseId": "string",
"validationId": "string"
}
CreateCustomModelVectorDatabaseFromValidationIdPayload
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
name | string | true | maxLength: 5000 minLength: 1 minLength: 1 |
The name of the vector database. |
useCaseId | string | true | The ID of the use case to link the vector database to. | |
validationId | string | true | The validation ID of the custom model validation. |
CreateVectorDatabaseRequest
{
"chunkingParameters": {
"chunkOverlapPercentage": 50,
"chunkSize": 0,
"chunkingMethod": "recursive",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"isSeparatorRegex": false,
"separators": [
"string"
]
},
"datasetId": "string",
"name": "string",
"parentVectorDatabaseId": "string",
"updateDeployments": false,
"updateLlmBlueprints": false,
"useCaseId": "string"
}
CreateVectorDatabaseRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
chunkingParameters | ChunkingParameters¦null | false | The text chunking parameters to use for building the vector database. | |
datasetId | string | true | The ID of the dataset to use for building the vector database. | |
name | string¦null | false | maxLength: 5000 minLength: 1 minLength: 1 |
The name of the vector database. |
parentVectorDatabaseId | string¦null | false | The ID of the parent vector database used as base for the re-building. | |
updateDeployments | boolean | false | Whether to update the deployments that use the parent vector database.Can only be set to True if parent_vector_database_id is provided. | |
updateLlmBlueprints | boolean | false | Whether to update the LLM blueprints that use the parent vector database.Can only be set to True if parent_vector_database_id is provided. | |
useCaseId | string | true | The ID of the use case to link the vector database to. |
CustomEmbeddingModelNames
"custom-embeddings/default"
CustomEmbeddingModelNames
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
CustomEmbeddingModelNames | string | false | Model names for custom embedding models. |
Enumerated Values¶
Property | Value |
---|---|
CustomEmbeddingModelNames | custom-embeddings/default |
DatasetLanguages
"Afrikaans"
DatasetLanguages
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
DatasetLanguages | string | false | The names of dataset languages. |
Enumerated Values¶
Property | Value |
---|---|
DatasetLanguages | [Afrikaans , Amharic , Arabic , Assamese , Azerbaijani , Belarusian , Bulgarian , Bengali , Breton , Bosnian , Catalan , Czech , Welsh , Danish , German , Greek , English , Esperanto , Spanish , Estonian , Basque , Persian , Finnish , French , Western Frisian , Irish , Scottish Gaelic , Galician , Gujarati , Hausa , Hebrew , Hindi , Croatian , Hungarian , Armenian , Indonesian , Icelandic , Italian , Japanese , Javanese , Georgian , Kazakh , Khmer , Kannada , Korean , Kurdish , Kyrgyz , Latin , Lao , Lithuanian , Latvian , Malagasy , Macedonian , Malayalam , Mongolian , Marathi , Malay , Burmese , Nepali , Dutch , Norwegian , Oromo , Oriya , Panjabi , Polish , Pashto , Portuguese , Romanian , Russian , Sanskrit , Sindhi , Sinhala , Slovak , Slovenian , Somali , Albanian , Serbian , Sundanese , Swedish , Swahili , Tamil , Telugu , Thai , Tagalog , Turkish , Uyghur , Ukrainian , Urdu , Uzbek , Vietnamese , Xhosa , Yiddish , Chinese ] |
EditVectorDatabaseRequest
{
"name": "string"
}
EditVectorDatabaseRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
name | string | true | maxLength: 5000 minLength: 1 minLength: 1 |
The new name of the vector database. |
EmbeddingModel
{
"description": "string",
"embeddingModel": "intfloat/e5-large-v2",
"languages": [
"Afrikaans"
],
"maxSequenceLength": 0
}
EmbeddingModel
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
description | string | true | The description of the embedding model. | |
embeddingModel | EmbeddingModelNames | true | The name of the embedding model. | |
languages | [DatasetLanguages] | true | The list of languages the embedding models supports. | |
maxSequenceLength | integer | true | The maximum input token sequence length that the embedding model can accept. |
EmbeddingModelNames
"intfloat/e5-large-v2"
EmbeddingModelNames
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
EmbeddingModelNames | string | false | Embedding model names (matching the format of HuggingFace repositories). |
Enumerated Values¶
Property | Value |
---|---|
EmbeddingModelNames | [intfloat/e5-large-v2 , intfloat/e5-base-v2 , intfloat/multilingual-e5-base , intfloat/multilingual-e5-small , sentence-transformers/all-MiniLM-L6-v2 , jinaai/jina-embedding-t-en-v1 , jinaai/jina-embedding-s-en-v2 , cl-nagoya/sup-simcse-ja-base ] |
ExecutionStatus
"NEW"
ExecutionStatus
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ExecutionStatus | string | false | Job and entity execution status. |
Enumerated Values¶
Property | Value |
---|---|
ExecutionStatus | [NEW , RUNNING , COMPLETED , REQUIRES_USER_INPUT , SKIPPED , ERROR ] |
HTTPValidationErrorResponse
{
"detail": [
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
]
}
HTTPValidationErrorResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
detail | [ValidationError] | false | none |
ListVectorDatabaseSortQueryParam
"name"
ListVectorDatabaseSortQueryParam
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ListVectorDatabaseSortQueryParam | string | false | Sort order values for listing vector databases. |
Enumerated Values¶
Property | Value |
---|---|
ListVectorDatabaseSortQueryParam | [name , -name , creationUserId , -creationUserId , creationDate , -creationDate , embeddingModel , -embeddingModel , datasetId , -datasetId , chunkingMethod , -chunkingMethod , chunksCount , -chunksCount , size , -size , userName , -userName , datasetName , -datasetName , playgroundsCount , -playgroundsCount , source , -source ] |
ListVectorDatabasesResponse
{
"count": 0,
"data": [
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
ListVectorDatabasesResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | true | The number of records on this page. | |
data | [VectorDatabaseResponse] | true | The list of records. | |
next | string¦null | true | The URL to the next page, or null if there is no such page. |
|
previous | string¦null | true | The URL to the previous page, or null if there is no such page. |
|
totalCount | integer | true | The total number of records. |
SupportedCustomModelEmbeddings
{
"id": "string",
"name": "string"
}
SupportedCustomModelEmbeddings
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
id | string | true | The validation ID of the custom embedding model. | |
name | string | true | The name of the custom embedding model. |
SupportedEmbeddingsResponse
{
"customModelEmbeddingValidations": [
{
"id": "string",
"name": "string"
}
],
"defaultEmbeddingModel": "string",
"embeddingModels": [
{
"description": "string",
"embeddingModel": "intfloat/e5-large-v2",
"languages": [
"Afrikaans"
],
"maxSequenceLength": 0
}
]
}
SupportedEmbeddingsResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
customModelEmbeddingValidations | [SupportedCustomModelEmbeddings] | false | The list of validated custom embedding models. | |
defaultEmbeddingModel | string | true | The name of the default embedding model. | |
embeddingModels | [EmbeddingModel] | true | The list of embeddings models. |
SupportedLanguagesResponse
{
"recommendedLanguage": "string",
"supportedLanguages": [
"string"
]
}
SupportedLanguagesResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
recommendedLanguage | string | true | The recommended language. | |
supportedLanguages | [string] | true | The list of supported languages. |
SupportedRetrievalSettingsResponse
{
"settings": [
{
"default": null,
"description": "string",
"enum": [
"string"
],
"groupId": "string",
"maximum": 0,
"minimum": 0,
"name": "string",
"settings": [
{}
],
"title": "string",
"type": "string"
}
]
}
SupportedRetrievalSettingsResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
settings | [VectorDatabaseSettingParameter] | true | The list of retrieval settings. |
SupportedTextChunkingResponse
{
"textChunkingConfigs": [
{
"defaultMethod": "string",
"embeddingModel": "intfloat/e5-large-v2",
"methods": [
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string",
"title": "Recursive"
}
]
}
]
}
SupportedTextChunkingResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
textChunkingConfigs | [TextChunkingConfig] | true | The list of text chunking configurations. |
TextChunkingConfig
{
"defaultMethod": "string",
"embeddingModel": "intfloat/e5-large-v2",
"methods": [
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string",
"title": "Recursive"
}
]
}
TextChunkingConfig
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
defaultMethod | string | true | The name of the default text chunking method. | |
embeddingModel | any | true | The name of the embedding model. |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | EmbeddingModelNames | false | Embedding model names (matching the format of HuggingFace repositories). |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | CustomEmbeddingModelNames | false | Model names for custom embedding models. |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
methods | [TextChunkingMethod] | true | The list of text chunking methods. |
TextChunkingMethod
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string",
"title": "Recursive"
}
TextChunkingMethod
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
chunkingMethod | ChunkingMethodNames | true | The name of the text chunking method. | |
chunkingParameters | [TextChunkingParameterFields] | true | The list of text chunking parameters. | |
description | string | true | The description of the text chunking method. | |
title | ChunkingMethodNamesTitle | true | User-friendly label for the text chunking method. |
TextChunkingParameterFields
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
TextChunkingParameterFields
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
default | any | true | The default value of the parameter. |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | integer | false | none |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | [string] | false | none |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | boolean | false | none |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
description | string | true | The description of the parameter. | |
max | integer¦null | true | The maximum value of the parameter (inclusive). | |
min | integer¦null | true | The minimum value of the parameter (inclusive). | |
name | string | true | The name of the parameter. | |
type | ChunkingParameterTypes | true | The data type of the parameter. |
ValidationError
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
ValidationError
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
loc | [anyOf] | true | none |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | string | false | none |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | integer | false | none |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
msg | string | true | none | |
type | string | true | none |
VectorDatabaseErrorMessages
"Unknown vector database error occurred."
VectorDatabaseErrorMessages
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseErrorMessages | string | false | Error messages for vector database errors. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseErrorMessages | [Unknown vector database error occurred. , A vector database prediction timeout error occurred. , Inference server is not running. , Downloading or finding embedding model weights failed. , Loading dataset failed , All loaded documents are empty or contain no text. , Raw loaded text dataset size exceeds the limit for the chosen embedding model. , Splitting documents into text chunks failed. , Generating embeddings from text chunks failed. , Creating an index from embeddings failed. , Storing vector database assets failed. , Calcluating the size of stored vector database assets failed. , Vector database size exceeds the maximum custom model image size. , API token was deleted or revoked. , Document retrieval failed. , Vector database was deleted. , Loading the embedding model failed. , External vector database connection is not available. , External vector database deployment has been deleted. , No access to external vector database deployment. , Only unstructured deployment types are supported. , An API token is required but was not provided in the request. , Deployment prediction server did not accept the request. , Deployment failed to process the chat completion request. , Deployment prediction does not comply with the expected format. , API token was deleted or revoked. , External embedding model connection is not available. , External embedding deployment has been deleted. , No access to external embedding deployment. , Only unstructured deployment types are supported. , An API token is required but was not provided in the request. , Deployment prediction server did not accept the request. , Deployment prediction does not comply with the expected format. , Deployment prediction does not contain the specified target column name. , Worker process was unexpectedly terminated. , Only one of responseColumnName or promptColumnName may be specified. , Either responseColumnName or promptColumnName may be specified. ] |
VectorDatabaseErrorResolutions
"An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance."
VectorDatabaseErrorResolutions
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseErrorResolutions | string | false | Vector database resolutions are not part of the vector database API response, but added to llm-blueprint and chat- and comparison-prompt responses to provide the user verbose information on how to resolve existing issues. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseErrorResolutions | [An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance. , A prediction timeout error occured for your vector database. Please increase your prediction timeout for your custom model validation. And then try revalidating the custom model again. Otherwise contact the DataRobot team for assistance. , A prediction error occurred because inference server is not running. Try revalidating the custom model again after some time. Otherwise contact the DataRobot team for assistance. , An unknown error occurred when loading the embedding weights. Choose another embedding model or contact DataRobot for assistance. , An unknown error occurred when loading the dataset. Validate the dataset or contact DataRobot for assistance. , Dataset must contain UTF-8 formatted text. PDFs that contain only images are not supported. , Reduce the size of raw text in the dataset or choose a smaller embedding model. , An unknown error occurred when splitting the dataset into chunks. Validate the dataset, try a different chunking configuration, or contact DataRobot for assistance. , An unknown error occurred during embedding generation. Validate the dataset, choose a different embedding model, or contact DataRobot for assistance. , An unknown error occurred during index creation. Contact DataRobot for assistance. , An unknown error occurred when storing the vector database.Reduce the dataset size or choose a smaller embedding model. Otherwise, contact DataRobot for assistance. , An unknown error occurred when reading the vector database settings. Contact DataRobot for assistance. , The vector database size exceeds the maximum custom model image size of 13.0 GB and therefore can not be used in production.Reduce the dataset size or choose a smaller embedding model. , An unknown error occurred during document retrieval. Contact DataRobot for assistance. , This LLM blueprint's vector database was deleted, disabling the blueprint. To use the same blueprint configuration, copy it to a draft and select a new database. , The embedding model cannot be loaded. Contact DataRobot for assistance. , The API token of the deployed external vector database was deleted or revoked. Using a new token that provides API access, validate and recreate the external vector database. , This LLM blueprint's external vector database is no longer available. Either restore the database connection or copy the saved LLM blueprint to a draft and select a new database. , The deployment providing access to the configured external vector database was deleted. Create a new vector database from an active deployment. , Access to the external vector database deployment was revoked. Create a new vector database from an authorized deployment. , The deployment type of the external vector database is not supported. Ensure the target type for your deployment is Unstructured or TextGeneration. , You are attempting to access external vector database validation through non-token authentication methods. Only token-based authentication is allowed. , The prediction request to the deployed external vector database failed. Ensure the deployment accepts JSON or CSV input and expects the prompt column to have the specified name. , The chat completion request to the deployed external vector database failed. To disable the chat API in custom model deployments, delete the chatfunction from the model and redeploy it. , The prediction response of the deployment has an invalid format. Ensure that the unstructured deployment responds with valid JSON that includes the specified target column name. , Make sure the target column name exist in the deployment prediction response. , The API token of the deployed external embedding model was deleted or revoked. Using a new token that provides API access, validate and recreate the external embedding model. , The external embedding model used with this LLM blueprint's vector database is no longer available. Either restore the external embedding connection or select a different vector database. , The deployment providing access to the configured external embedding model was deleted. Create a new external embedding model from an active deployment. , Access to the external embedding deployment was revoked. Create a new embedding model from an authorized deployment. , The deployment type of the external embedding model is not supported. Ensure the target type for your deployment is Unstructured. , You are attempting to access external embedding validation through non-token authentication methods. Only token-based authentication is allowed. , The prediction request to the deployed external embedding model failed. Make sure the deployment accepts JSON or CSV input with specified prompt column name. , The prediction response of the deployment has an invalid format. Ensure the unstructured deployment responds with valid JSON that includes the specified target column name. , The worker process was unexpectedly terminated. This could have been caused by excessive memory usage or an internal system error. Try re-creating the vector database with a smaller dataset and a smaller embedding model. , Make sure only one of responseColumnName or promptColumnName must be specified. , Make sure that either one of responseColumnName or promptColumnName is specified. ] |
VectorDatabaseErrorResolutionsForDrafts
"An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance."
VectorDatabaseErrorResolutionsForDrafts
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseErrorResolutionsForDrafts | string | false | Error resolutions for vector databases used in blueprint drafts. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseErrorResolutionsForDrafts | [An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance. , A prediction timeout error occured for your vector database. Please increase your prediction timeout for your custom model validation. And then try revalidating the custom model again. Otherwise contact the DataRobot team for assistance. , A prediction error occurred because inference server is not running. Try revalidating the custom model again after some time. Otherwise contact the DataRobot team for assistance. , An unknown error occurred when loading the embedding weights. Choose another embedding model or contact DataRobot for assistance. , An unknown error occurred when loading the dataset. Validate the dataset or contact DataRobot for assistance. , Dataset must contain UTF-8 formatted text. PDFs that contain only images are not supported. , Reduce the size of raw text in the dataset or choose a smaller embedding model. , An unknown error occurred when splitting the dataset into chunks. Validate the dataset, try a different chunking configuration, or contact DataRobot for assistance. , An unknown error occurred during embedding generation. Validate the dataset, choose a different embedding model, or contact DataRobot for assistance. , An unknown error occurred during index creation. Contact DataRobot for assistance. , An unknown error occurred when storing the vector database.Reduce the dataset size or choose a smaller embedding model. Otherwise, contact DataRobot for assistance. , An unknown error occurred when reading the vector database settings. Contact DataRobot for assistance. , The vector database size exceeds the maximum custom model image size of 13.0 GB and therefore can not be used in production.Reduce the dataset size or choose a smaller embedding model. , An unknown error occurred during document retrieval. Contact DataRobot for assistance. , The vector database for this draft has been deleted. To proceed, select a new database in the configuration. , The embedding model cannot be loaded. Contact DataRobot for assistance. , The API token of the deployed external vector database was deleted or revoked. Using a new token that provides API access, validate and recreate the external vector database. , The external vector database for this draft is no longer available. To proceed, either restore the database connection or select a new database in the configuration. , The deployment providing access to the configured external vector database was deleted. Create a new vector database from an active deployment. , Access to the external vector database deployment was revoked. Create a new vector database from an authorized deployment. , The deployment type of the external vector database is not supported. Ensure the target type for your deployment is Unstructured or TextGeneration. , You are attempting to access external vector database validation through non-token authentication methods. Only token-based authentication is allowed. , The prediction request to the deployed external vector database failed. Ensure the deployment accepts JSON or CSV input and expects the prompt column to have the specified name. , The chat completion request to the deployed external vector database failed. To disable the chat API in custom model deployments, delete the chatfunction from the model and redeploy it. , The prediction response of the deployment has an invalid format. Ensure that the unstructured deployment responds with valid JSON that includes the specified target column name. , Make sure the target column name exist in the deployment prediction response. , The API token of the deployed external embedding model was deleted or revoked. Using a new token that provides API access, validate and recreate the external embedding model. , The external embedding model used with this LLM blueprint's vector database is no longer available. Either restore the external embedding connection or select a different vector database. , The deployment providing access to the configured external embedding model was deleted. Create a new external embedding model from an active deployment. , Access to the external embedding deployment was revoked. Create a new embedding model from an authorized deployment. , The deployment type of the external embedding model is not supported. Ensure the target type for your deployment is Unstructured. , You are attempting to access external embedding validation through non-token authentication methods. Only token-based authentication is allowed. , The prediction request to the deployed external embedding model failed. Make sure the deployment accepts JSON or CSV input with specified prompt column name. , The prediction response of the deployment has an invalid format. Ensure the unstructured deployment responds with valid JSON that includes the specified target column name. , The worker process was unexpectedly terminated. This could have been caused by excessive memory usage or an internal system error. Try re-creating the vector database with a smaller dataset and a smaller embedding model. , Make sure only one of responseColumnName or promptColumnName must be specified. , Make sure that either one of responseColumnName or promptColumnName is specified. ] |
VectorDatabaseExportResponse
{
"exportDatasetId": "string",
"jobId": "string",
"vectorDatabaseId": "string"
}
VectorDatabaseExportResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
exportDatasetId | string | true | The AI Catalog dataset ID. | |
jobId | string(uuid4) | true | The ID of the export job. | |
vectorDatabaseId | string | true | The ID of the vector database. |
VectorDatabaseResponse
{
"addedDatasetIds": [
"string"
],
"addedDatasetNames": [
"string"
],
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred.",
"errorResolution": "An unknown error during vector database creation occurred. Validate the dataset or the external vector database if applicable. Otherwise, contact DataRobot for assistance.",
"executionStatus": "NEW",
"familyId": "string",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"metadataColumns": [
"string"
],
"name": "string",
"organizationId": "string",
"parentId": "string",
"percentage": 0,
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string",
"version": 0
}
VectorDatabaseResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
addedDatasetIds | [string]¦null | true | The list of dataset IDs that were added to the vector database in addition to the initial creation dataset. | |
addedDatasetNames | [string]¦null | true | The list of dataset names that were added to the vector database in addition to the initial creation dataset. | |
chunkOverlapPercentage | integer¦null | true | The chunk overlap percentage that the vector database uses. | |
chunkSize | integer¦null | true | The size of the text chunk (measured in tokens) that the vector database uses. | |
chunkingMethod | ChunkingMethodNames¦null | true | The text chunking method the vector database uses. | |
chunksCount | integer | true | The number of text chunks in the vector database. | |
creationDate | string(date-time) | true | The creation date of the vector database (ISO 8601 formatted). | |
creationUserId | string | true | The ID of the user that created this vector database. | |
datasetId | string¦null | true | The ID of the dataset the vector database was built from. | |
datasetName | string | true | The name of the dataset this vector database was built from. | |
embeddingModel | any | true | The name of the embedding model the vector database uses. |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | EmbeddingModelNames | false | Embedding model names (matching the format of HuggingFace repositories). |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | string | false | none |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
embeddingValidationId | string¦null | true | The validation ID of the custom model embedding (in case of using a custom model for embeddings). | |
errorMessage | VectorDatabaseErrorMessages¦null | true | The error message associated with the vector database creation error (in case of a creation error). | |
errorResolution | any | true | The suggested error resolution for the vector database creation error (in case of a creation error). |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | VectorDatabaseErrorResolutions | false | Vector database resolutions are not part of the vector database API response, but added to llm-blueprint and chat- and comparison-prompt responses to provide the user verbose information on how to resolve existing issues. |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | VectorDatabaseErrorResolutionsForDrafts | false | Error resolutions for vector databases used in blueprint drafts. |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
executionStatus | ExecutionStatus | true | The creation status of the vector database. | |
familyId | string¦null | true | An ID associated with a family of vector databases, that is, a parent and all descendant vector databases. All vector databases that are descendants of the same root parent share a family ID.The family ID is equal to the vector database ID of the root parent.Like this each vector database knows it's direct parent and the root parent. | |
id | string | true | The ID of the vector database. | |
isSeparatorRegex | boolean | true | Whether the text chunking separator uses a regular expression. | |
lastUpdateDate | string(date-time) | true | The date of the most recent update of this playground (ISO 8601 formatted). | |
metadataColumns | [string]¦null | false | The list of metadata columns in the vector database. | |
name | string | true | The name of the vector database. | |
organizationId | string | true | The ID of the DataRobot organization this vector database belongs to. | |
parentId | string¦null | true | The ID of the direct parent vector database.It is generated when a vector database is created from another vector database.For the root (parent), ID is 'None'. | |
percentage | number¦null | false | Vector database progress percentage. | |
playgroundsCount | integer | true | The number of playgrounds that use this vector database. | |
separators | [any]¦null | true | The text chunking separators that the vector database uses. | |
size | integer | true | The size of the vector database (in bytes). | |
source | VectorDatabaseSource | true | The source of the vector database. | |
tenantId | string(uuid4) | true | The ID of the DataRobot tenant this vector database belongs to. | |
useCaseId | string | true | The ID of the use case the vector database is linked to. | |
userName | string | true | The name of the user that created this vector database. | |
validationId | string¦null | true | The validation ID of the custom model vector database (in case of using a custom model vector database). | |
version | integer | true | The version of the vector database linked to a certain family ID. |
VectorDatabaseSettingParameter
{
"default": null,
"description": "string",
"enum": [
"string"
],
"groupId": "string",
"maximum": 0,
"minimum": 0,
"name": "string",
"settings": [
{
"default": null,
"description": "string",
"enum": [
"string"
],
"groupId": "string",
"maximum": 0,
"minimum": 0,
"name": "string",
"settings": [
{}
],
"title": "string",
"type": "string"
}
],
"title": "string",
"type": "string"
}
VectorDatabaseSettingParameter
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
default | any | false | The default value of the parameter. | |
description | string | true | The description of the parameter. | |
enum | [string]¦null | false | The list of possible values for the parameter. | |
groupId | string¦null | false | The identifier of the group the parameter belongs to. | |
maximum | integer¦null | false | The maximum value of the parameter. | |
minimum | integer¦null | false | The minimum value of the parameter. | |
name | string | true | The name of the parameter. | |
settings | [VectorDatabaseSettingParameter]¦null | false | The list of available settings for the parameter. | |
title | string | true | The title of the parameter. | |
type | any | true | The type of the parameter. |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | VectorDatabaseSettingTypes | false | The types of vector database setting parameters. |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | [VectorDatabaseSettingTypes] | false | [The types of vector database setting parameters.] |
VectorDatabaseSettingTypes
"string"
VectorDatabaseSettingTypes
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseSettingTypes | string | false | The types of vector database setting parameters. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseSettingTypes | [string , integer , boolean , null , number , array ] |
VectorDatabaseSource
"DataRobot"
VectorDatabaseSource
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseSource | string | false | The source of the vector database. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseSource | [DataRobot , External ] |