Vector Databases (GenAI)¶
This page outlines the operations, endpoints, parameters, and example requests and responses for the Vector Databases (GenAI).
GET /api/v2/genai/vectorDatabases/¶
List vector databases.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
useCaseId | query | any | false | Only retrieve the vector databases linked to these use case IDs. |
playgroundId | query | string | false | Only retrieve the vector databases linked to this playground ID. |
offset | query | integer | false | Skip the specified number of values. |
limit | query | integer | false | Retrieve only the specified number of values. |
search | query | any | false | Only retrieve the vector databases with names matching the search query. |
sort | query | any | false | Apply this sort order to the results. Valid options are "name", "creationDate", "creationUserId", "embeddingModel", "datasetId", "chunkingMethod", "chunksCount", "size", "userName", "datasetName", "playgroundsCount", "source". Prefix the attribute name with a dash to sort in descending order, e.g., sort=-creationDate. |
completedOnly | query | boolean | false | If true , only retrieve the vector databases that have finished building. The default is false . |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred",
"executionStatus": "NEW",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"name": "string",
"organizationId": "string",
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string"
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Vector databases successfully retrieved. | ListVectorDatabasesResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/genai/vectorDatabases/¶
Create a new vector database.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/genai/vectorDatabases/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"chunkingParameters": {
"chunkOverlapPercentage": 50,
"chunkSize": 0,
"chunkingMethod": "recursive",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"isSeparatorRegex": false,
"separators": [
"string"
]
},
"datasetId": "string",
"name": "string",
"useCaseId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | CreateVectorDatabaseRequest | true | none |
Example responses¶
202 Response
{
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred",
"executionStatus": "NEW",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"name": "string",
"organizationId": "string",
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Vector database creation job successfully accepted. Follow the Location header to poll for job execution status. |
VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/genai/vectorDatabases/fromCustomModelDeployment/¶
Create a new vector database from a custom model deployment.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/genai/vectorDatabases/fromCustomModelDeployment/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"name": "string",
"useCaseId": "string",
"validationId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | any | true | none |
Example responses¶
201 Response
{
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred",
"executionStatus": "NEW",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"name": "string",
"organizationId": "string",
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
201 | Created | Custom model hosted vector database successfully added. Full representation is available in the response body. | VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/supportedEmbeddings/¶
List the supported embedding models for building vector databases.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/supportedEmbeddings/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
datasetId | query | string | false | Only retrieve the embedding models compatible with this dataset ID. |
useCaseId | query | string | false | If specified, include the custom model embeddings available for this use case ID. |
Example responses¶
200 Response
{
"customModelEmbeddingValidations": [
{
"id": "string",
"name": "string"
}
],
"defaultEmbeddingModel": "string",
"embeddingModels": [
{
"description": "string",
"embeddingModel": "intfloat/e5-large-v2",
"languages": [
"Afrikaans"
],
"maxSequenceLength": 0
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Supported embeddings successfully retrieved. | SupportedEmbeddingsResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/supportedTextChunkings/¶
List the supported text chunking methods for building vector databases.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/supportedTextChunkings/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Example responses¶
200 Response
{
"textChunkingConfigs": [
{
"defaultMethod": "string",
"embeddingModel": "intfloat/e5-large-v2",
"methods": [
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string"
}
]
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Supported text chunking methods successfully retrieved. | SupportedTextChunkingResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
DELETE /api/v2/genai/vectorDatabases/{vectorDatabaseId}/¶
Delete an existing vector database.
Code samples¶
# You can also use wget
curl -X DELETE https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to delete. |
Example responses¶
422 Response
{
"detail": [
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | Vector database successfully deleted. | None |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/{vectorDatabaseId}/¶
Retrieve an existing vector database.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to retrieve. |
Example responses¶
200 Response
{
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred",
"executionStatus": "NEW",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"name": "string",
"organizationId": "string",
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Vector database successfully retrieved. | VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/genai/vectorDatabases/{vectorDatabaseId}/¶
Edit an existing vector database.
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"name": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to edit. |
body | body | EditVectorDatabaseRequest | true | none |
Example responses¶
200 Response
{
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred",
"executionStatus": "NEW",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"name": "string",
"organizationId": "string",
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Vector database successfully updated. | VectorDatabaseResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/vectorDatabases/{vectorDatabaseId}/textAndEmbeddings/¶
Retrieve the text chunk and embeddings asset for an existing vector database.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/vectorDatabases/{vectorDatabaseId}/textAndEmbeddings/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
vectorDatabaseId | path | string | true | The ID of the vector database to retrieve the assets for. |
Example responses¶
200 Response
null
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Text and embeddings asset successfully retrieved. | Inline |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
Response Schema¶
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
Schemas¶
ChunkingMethodNames
"recursive"
ChunkingMethodNames
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ChunkingMethodNames | string | false | Supported names of text chunking methods. |
Enumerated Values¶
Property | Value |
---|---|
ChunkingMethodNames | recursive |
ChunkingParameterTypes
"int"
ChunkingParameterTypes
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ChunkingParameterTypes | string | false | Supported parameter data types for text chunking parameters. |
Enumerated Values¶
Property | Value |
---|---|
ChunkingParameterTypes | [int , list[str] , bool ] |
ChunkingParameters
{
"chunkOverlapPercentage": 50,
"chunkSize": 0,
"chunkingMethod": "recursive",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"isSeparatorRegex": false,
"separators": [
"string"
]
}
ChunkingParameters
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
chunkOverlapPercentage | integer | true | maximum: 50 minimum: 0 |
The chunk overlap percentage to use for text chunking. |
chunkSize | integer | true | The chunk size to use for text chunking (measured in tokens). | |
chunkingMethod | ChunkingMethodNames | true | The text chunking method to use. | |
embeddingModel | EmbeddingModelNames¦null | false | The name of the embedding model to use. If omitted, DataRobot will choose the default embedding model automatically. | |
embeddingValidationId | string¦null | false | The validation ID of the custom embedding model (in case of using a custom model for embeddings). | |
isSeparatorRegex | boolean | false | Whether the text chunking separator uses a regular expression. | |
separators | [string] | true | maxItems: 9 |
The list of separators to use for text chunking. |
CreateCustomModelVectorDatabaseFromDeploymentRequest
{
"deploymentId": "string",
"modelId": "string",
"name": "string",
"promptColumnName": "string",
"targetColumnName": "string",
"useCaseId": "string"
}
CreateCustomModelVectorDatabaseFromDeploymentRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
deploymentId | string | true | The ID of the custom model deployment. | |
modelId | string | true | The ID of the model in the custom model deployment. | |
name | string | true | maxLength: 5000 |
The name of the vector database. |
promptColumnName | string | true | maxLength: 5000 |
The name of the column the custom model uses for prompt text input. |
targetColumnName | string | true | maxLength: 5000 |
The name of the column the custom model uses for prediction output. |
useCaseId | string | true | The ID of the use case to link the vector database to. |
CreateCustomModelVectorDatabaseFromValidationIdPayload
{
"name": "string",
"useCaseId": "string",
"validationId": "string"
}
CreateCustomModelVectorDatabaseFromValidationIdPayload
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
name | string | true | maxLength: 5000 |
The name of the vector database. |
useCaseId | string | true | The ID of the use case to link the vector database to. | |
validationId | string | true | The validation ID of the custom model validation. |
CreateVectorDatabaseRequest
{
"chunkingParameters": {
"chunkOverlapPercentage": 50,
"chunkSize": 0,
"chunkingMethod": "recursive",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"isSeparatorRegex": false,
"separators": [
"string"
]
},
"datasetId": "string",
"name": "string",
"useCaseId": "string"
}
CreateVectorDatabaseRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
chunkingParameters | ChunkingParameters | true | The text chunking parameters to use for building the vector database. | |
datasetId | string | true | The ID of the dataset to use for building the vector database. | |
name | string¦null | false | maxLength: 5000 |
The name of the vector database. |
useCaseId | string | true | The ID of the use case to link the vector database to. |
CustomEmbeddingModelNames
"custom-embeddings/default"
CustomEmbeddingModelNames
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
CustomEmbeddingModelNames | string | false | Model names for custom embedding models. |
Enumerated Values¶
Property | Value |
---|---|
CustomEmbeddingModelNames | custom-embeddings/default |
DatasetLanguages
"Afrikaans"
DatasetLanguages
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
DatasetLanguages | string | false | The names of dataset languages. |
Enumerated Values¶
Property | Value |
---|---|
DatasetLanguages | [Afrikaans , Amharic , Arabic , Assamese , Azerbaijani , Belarusian , Bulgarian , Bengali , Breton , Bosnian , Catalan , Czech , Welsh , Danish , German , Greek , English , Esperanto , Spanish , Estonian , Basque , Persian , Finnish , French , Western Frisian , Irish , Scottish Gaelic , Galician , Gujarati , Hausa , Hebrew , Hindi , Croatian , Hungarian , Armenian , Indonesian , Icelandic , Italian , Japanese , Javanese , Georgian , Kazakh , Khmer , Kannada , Korean , Kurdish , Kyrgyz , Latin , Lao , Lithuanian , Latvian , Malagasy , Macedonian , Malayalam , Mongolian , Marathi , Malay , Burmese , Nepali , Dutch , Norwegian , Oromo , Oriya , Panjabi , Polish , Pashto , Portuguese , Romanian , Russian , Sanskrit , Sindhi , Sinhala , Slovak , Slovenian , Somali , Albanian , Serbian , Sundanese , Swedish , Swahili , Tamil , Telugu , Thai , Tagalog , Turkish , Uyghur , Ukrainian , Urdu , Uzbek , Vietnamese , Xhosa , Yiddish , Chinese ] |
EditVectorDatabaseRequest
{
"name": "string"
}
EditVectorDatabaseRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
name | string | true | maxLength: 5000 |
The new name of the vector database. |
EmbeddingModel
{
"description": "string",
"embeddingModel": "intfloat/e5-large-v2",
"languages": [
"Afrikaans"
],
"maxSequenceLength": 0
}
EmbeddingModel
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
description | string | true | The description of the embedding model. | |
embeddingModel | EmbeddingModelNames | true | The name of the embedding model. | |
languages | [DatasetLanguages] | true | The list of languages the embedding models supports. | |
maxSequenceLength | integer | true | The maximum input token sequence length that the embedding model can accept. |
EmbeddingModelNames
"intfloat/e5-large-v2"
EmbeddingModelNames
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
EmbeddingModelNames | string | false | Embedding model names (matching the format of HuggingFace repositories). |
Enumerated Values¶
Property | Value |
---|---|
EmbeddingModelNames | [intfloat/e5-large-v2 , intfloat/e5-base-v2 , intfloat/multilingual-e5-base , sentence-transformers/all-MiniLM-L6-v2 , jinaai/jina-embedding-t-en-v1 , cl-nagoya/sup-simcse-ja-base ] |
ExecutionStatus
"NEW"
ExecutionStatus
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ExecutionStatus | string | false | Job execution status. |
Enumerated Values¶
Property | Value |
---|---|
ExecutionStatus | [NEW , RUNNING , COMPLETED , ERROR ] |
HTTPValidationErrorResponse
{
"detail": [
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
]
}
HTTPValidationErrorResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
detail | [ValidationError] | false | none |
ListVectorDatabaseSortQueryParam
"name"
ListVectorDatabaseSortQueryParam
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ListVectorDatabaseSortQueryParam | string | false | Sort order values for listing vector databases. |
Enumerated Values¶
Property | Value |
---|---|
ListVectorDatabaseSortQueryParam | [name , -name , creationUserId , -creationUserId , creationDate , -creationDate , embeddingModel , -embeddingModel , datasetId , -datasetId , chunkingMethod , -chunkingMethod , chunksCount , -chunksCount , size , -size , userName , -userName , datasetName , -datasetName , playgroundsCount , -playgroundsCount , source , -source ] |
ListVectorDatabasesResponse
{
"count": 0,
"data": [
{
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred",
"executionStatus": "NEW",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"name": "string",
"organizationId": "string",
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string"
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
ListVectorDatabasesResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | true | The number of records on this page. | |
data | [VectorDatabaseResponse] | true | The list of records. | |
next | string¦null | true | The URL to the next page, or null if there is no such page. |
|
previous | string¦null | true | The URL to the previous page, or null if there is no such page. |
|
totalCount | integer | true | The total number of records. |
SupportedCustomModelEmbeddings
{
"id": "string",
"name": "string"
}
SupportedCustomModelEmbeddings
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
id | string | true | The validation ID of the custom embedding model. | |
name | string | true | The name of the custom embedding model. |
SupportedEmbeddingsResponse
{
"customModelEmbeddingValidations": [
{
"id": "string",
"name": "string"
}
],
"defaultEmbeddingModel": "string",
"embeddingModels": [
{
"description": "string",
"embeddingModel": "intfloat/e5-large-v2",
"languages": [
"Afrikaans"
],
"maxSequenceLength": 0
}
]
}
SupportedEmbeddingsResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
customModelEmbeddingValidations | [SupportedCustomModelEmbeddings] | false | The list of validated custom embedding models. | |
defaultEmbeddingModel | string | true | The name of the default embedding model. | |
embeddingModels | [EmbeddingModel] | true | The list of embeddings models. |
SupportedTextChunkingResponse
{
"textChunkingConfigs": [
{
"defaultMethod": "string",
"embeddingModel": "intfloat/e5-large-v2",
"methods": [
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string"
}
]
}
]
}
SupportedTextChunkingResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
textChunkingConfigs | [TextChunkingConfig] | true | The list of text chunking configurations. |
TextChunkingConfig
{
"defaultMethod": "string",
"embeddingModel": "intfloat/e5-large-v2",
"methods": [
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string"
}
]
}
TextChunkingConfig
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
defaultMethod | string | true | The name of the default text chunking method. | |
embeddingModel | any | true | The name of the embedding model. |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | EmbeddingModelNames | false | Embedding model names (matching the format of HuggingFace repositories). |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | CustomEmbeddingModelNames | false | Model names for custom embedding models. |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
methods | [TextChunkingMethod] | true | The list of text chunking methods. |
TextChunkingMethod
{
"chunkingMethod": "recursive",
"chunkingParameters": [
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
],
"description": "string"
}
TextChunkingMethod
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
chunkingMethod | ChunkingMethodNames | true | The name of the text chunking method. | |
chunkingParameters | [TextChunkingParameterFields] | true | The list of text chunking parameters. | |
description | string | true | The description of the text chunking method. |
TextChunkingParameterFields
{
"default": 0,
"description": "string",
"max": 0,
"min": 0,
"name": "string",
"type": "int"
}
TextChunkingParameterFields
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
default | any | true | The default value of the parameter. |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | integer | false | none |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | [string] | false | none |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | boolean | false | none |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
description | string | true | The description of the parameter. | |
max | integer¦null | true | The maximum value of the parameter (inclusive). | |
min | integer¦null | true | The minimum value of the parameter (inclusive). | |
name | string | true | The name of the parameter. | |
type | ChunkingParameterTypes | true | The data type of the parameter. |
ValidationError
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
ValidationError
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
loc | [anyOf] | true | none |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | string | false | none |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | integer | false | none |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
msg | string | true | none | |
type | string | true | none |
VectorDatabaseErrorMessages
"Unknown vector database error occurred"
VectorDatabaseErrorMessages
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseErrorMessages | string | false | Error messages for vector database errors. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseErrorMessages | [Unknown vector database error occurred , A vector database prediction timeout error occurred. , Downloading or finding embedding model weights failed , Loading dataset failed , All loaded documents are empty or contain no text , Raw loaded text dataset size exceeds the limit for the chosen embedding model , Splitting documents into text chunks failed , Generating embeddings from text chunks failed , Creating an index from embeddings failed , Storing vector database assets failed , Calcluating the size of stored vector database assets failed , API token was deleted or revoked , Document retrieval failed , Vector database was deleted , Loading the embedding model failed , External vector database connection is not available , External vector database deployment has been deleted , No access to external vector database deployment , Only unstructured deployment types are supported , An API token is required but was not provided in the request , Deployment prediction server did not accept the request , Deployment prediction does not comply with the expected format , API token was deleted or revoked , External embedding model connection is not available , External embedding deployment has been deleted , No access to external embedding deployment , Only unstructured deployment types are supported , An API token is required but was not provided in the request , Deployment prediction server did not accept the request , Deployment prediction does not comply with the expected format , Worker process was unexpectedly terminated ] |
VectorDatabaseResponse
{
"chunkOverlapPercentage": 0,
"chunkSize": 0,
"chunkingMethod": "recursive",
"chunksCount": 0,
"creationDate": "2019-08-24T14:15:22Z",
"creationUserId": "string",
"datasetId": "string",
"datasetName": "string",
"embeddingModel": "intfloat/e5-large-v2",
"embeddingValidationId": "string",
"errorMessage": "Unknown vector database error occurred",
"executionStatus": "NEW",
"id": "string",
"isSeparatorRegex": true,
"lastUpdateDate": "2019-08-24T14:15:22Z",
"name": "string",
"organizationId": "string",
"playgroundsCount": 0,
"separators": [
null
],
"size": 0,
"source": "DataRobot",
"tenantId": "string",
"useCaseId": "string",
"userName": "string",
"validationId": "string"
}
VectorDatabaseResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
chunkOverlapPercentage | integer | true | The chunk overlap percentage the vector database uses. | |
chunkSize | integer | true | The size of the text chunk (measured in tokens) the vector database uses. | |
chunkingMethod | ChunkingMethodNames¦null | true | The text chunking method the vector database uses. | |
chunksCount | integer | true | The number of text chunks in the vector database. | |
creationDate | string(date-time) | true | The creation date of the vector database (ISO 8601 formatted). | |
creationUserId | string | true | The ID of the user that created this vector database. | |
datasetId | string¦null | true | The ID of the dataset the vector database was built from. | |
datasetName | string | true | The name of the dataset this vector database was built from. | |
embeddingModel | EmbeddingModelNames¦null | true | The name of the embedding model the vector database uses. | |
embeddingValidationId | string¦null | true | The validation ID of the custom model embedding (in case of using a custom model for embeddings). | |
errorMessage | VectorDatabaseErrorMessages¦null | true | The error message associated with the vector database creation error (in case of a creation error). | |
executionStatus | ExecutionStatus | true | The creation status of the vector database. | |
id | string | true | The ID of the vector database. | |
isSeparatorRegex | boolean | true | Whether the text chunking separator uses a regular expression. | |
lastUpdateDate | string(date-time) | true | The date of the most recent update of this playground (ISO 8601 formatted). | |
name | string | true | The name of the vector database. | |
organizationId | string | true | The ID of the DataRobot organization this vector database belongs to. | |
playgroundsCount | integer | true | The number of playgrounds that use this vector database. | |
separators | [any] | true | The text chunking separators the vector database uses. | |
size | integer | true | The size of the vector database (in bytes). | |
source | VectorDatabaseSource | true | The source of the vector database. | |
tenantId | string(uuid4) | true | The ID of the DataRobot tenant this vector database belongs to. | |
useCaseId | string | true | The ID of the use case the vector database is linked to. | |
userName | string | true | The name of the user that created this vector database. | |
validationId | string¦null | true | The validation ID of the custom model vector database (in case of using a custom model vector database). |
VectorDatabaseSource
"DataRobot"
VectorDatabaseSource
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseSource | string | false | The source of the vector database. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseSource | [DataRobot , External ] |