Custom Model Vector Databases (GenAI)¶
This page outlines the operations, endpoints, parameters, and example requests and responses for the Custom Model Vector Databases (GenAI).
GET /api/v2/genai/customModelVectorDatabaseValidations/¶
List custom model vector database validations.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/customModelVectorDatabaseValidations/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
useCaseId | query | any | false | Only retrieve the custom model vector database validations associated with these use case IDs. |
playgroundId | query | string | false | Only retrieve the custom model vector database validations associated with this playground ID. |
offset | query | integer | false | Skip the specified number of values. |
limit | query | integer | false | Retrieve only the specified number of values. |
search | query | any | false | Only retrieve the custom model vector database validations matching the search query. |
sort | query | any | false | Apply this sort order to the results. Valid options are "name", "deploymentName", "userName", "creationDate". Prefix the attribute name with a dash to sort in descending order, e.g., sort=-creationDate. |
completedOnly | query | boolean | false | If true , only retrieve the completed custom model vector database validations. The default is false . |
deploymentId | query | string | false | Only retrieve the custom model vector database validations associated with this deployment ID. |
modelId | query | string | false | Only retrieve the custom model vector database validations associated with this model ID. |
promptColumnName | query | any | false | Only retrieve the custom model vector database validations where the custom model uses this column name for prompt input. |
targetColumnName | query | any | false | Only retrieve the custom model vector database validations where the custom model uses this column name for prediction output. |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"creationDate": "2019-08-24T14:15:22Z",
"deploymentAccessData": {
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
},
"deploymentId": "string",
"deploymentName": "string",
"errorMessage": "Unknown vector database error occurred",
"id": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 0,
"promptColumnName": "string",
"targetColumnName": "string",
"tenantId": "string",
"useCaseId": "string",
"userId": "string",
"userName": "string",
"validationStatus": "TESTING"
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Custom model vector database validations successfully retrieved. | ListCustomModelVectorDatabaseValidationsResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/genai/customModelVectorDatabaseValidations/¶
Validate a vector database hosted in a custom model deployment for use in the playground.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/genai/customModelVectorDatabaseValidations/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"deploymentId": "string",
"modelId": "string",
"name": "Untitled",
"predictionTimeout": 300,
"promptColumnName": "string",
"targetColumnName": "string",
"useCaseId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | CreateCustomModelValidationRequest | true | none |
Example responses¶
202 Response
{
"creationDate": "2019-08-24T14:15:22Z",
"deploymentAccessData": {
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
},
"deploymentId": "string",
"deploymentName": "string",
"errorMessage": "Unknown vector database error occurred",
"id": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 0,
"promptColumnName": "string",
"targetColumnName": "string",
"tenantId": "string",
"useCaseId": "string",
"userId": "string",
"userName": "string",
"validationStatus": "TESTING"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Custom model vector database validation job successfully accepted. Follow the Location header to poll for job execution status. |
CustomModelVectorDatabaseValidationResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
DELETE /api/v2/genai/customModelVectorDatabaseValidations/{validationId}/¶
Delete an existing custom model vector database validation.
Code samples¶
# You can also use wget
curl -X DELETE https://app.datarobot.com/api/v2/genai/customModelVectorDatabaseValidations/{validationId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
validationId | path | string | true | The ID of the custom model vector database validation to delete. |
Example responses¶
422 Response
{
"detail": [
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | Successfully deleted custom model vector database validation | None |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/genai/customModelVectorDatabaseValidations/{validationId}/¶
Retrieve the status of validating a custom model vector database.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/genai/customModelVectorDatabaseValidations/{validationId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
validationId | path | string | true | The ID of the custom model vector database validation to retrieve. |
Example responses¶
200 Response
{
"creationDate": "2019-08-24T14:15:22Z",
"deploymentAccessData": {
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
},
"deploymentId": "string",
"deploymentName": "string",
"errorMessage": "Unknown vector database error occurred",
"id": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 0,
"promptColumnName": "string",
"targetColumnName": "string",
"tenantId": "string",
"useCaseId": "string",
"userId": "string",
"userName": "string",
"validationStatus": "TESTING"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Custom model vector database validation status successfully retrieved. | CustomModelVectorDatabaseValidationResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/genai/customModelVectorDatabaseValidations/{validationId}/¶
Edit an existing custom model vector database validation.
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/genai/customModelVectorDatabaseValidations/{validationId}/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"deploymentId": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 1,
"promptColumnName": "string",
"targetColumnName": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
validationId | path | string | true | The ID of the custom model vector database validation to edit. |
body | body | EditCustomModelValidationRequest | true | none |
Example responses¶
200 Response
{
"creationDate": "2019-08-24T14:15:22Z",
"deploymentAccessData": {
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
},
"deploymentId": "string",
"deploymentName": "string",
"errorMessage": "Unknown vector database error occurred",
"id": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 0,
"promptColumnName": "string",
"targetColumnName": "string",
"tenantId": "string",
"useCaseId": "string",
"userId": "string",
"userName": "string",
"validationStatus": "TESTING"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Custom model vector database validation successfully updated. | CustomModelVectorDatabaseValidationResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/genai/customModelVectorDatabaseValidations/{validationId}/revalidate/¶
Revalidate an existing custom model vector database.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/genai/customModelVectorDatabaseValidations/{validationId}/revalidate/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
validationId | path | string | true | The ID of the custom model vector database validation to revalidate. |
Example responses¶
200 Response
{
"creationDate": "2019-08-24T14:15:22Z",
"deploymentAccessData": {
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
},
"deploymentId": "string",
"deploymentName": "string",
"errorMessage": "Unknown vector database error occurred",
"id": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 0,
"promptColumnName": "string",
"targetColumnName": "string",
"tenantId": "string",
"useCaseId": "string",
"userId": "string",
"userName": "string",
"validationStatus": "TESTING"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Custom model vector database successfully revalidated. | CustomModelVectorDatabaseValidationResponse |
422 | Unprocessable Entity | Validation Error | HTTPValidationErrorResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
Schemas¶
CreateCustomModelValidationRequest
{
"deploymentId": "string",
"modelId": "string",
"name": "Untitled",
"predictionTimeout": 300,
"promptColumnName": "string",
"targetColumnName": "string",
"useCaseId": "string"
}
CreateCustomModelValidationRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
deploymentId | string | true | The ID of the custom model deployment. | |
modelId | string¦null | false | The ID of the model used in the deployment. | |
name | string | false | maxLength: 5000 |
The name to use for the validated custom model. |
predictionTimeout | integer | false | maximum: 1200 minimum: 1 |
The timeout in seconds for the prediction when validating a custom model. Defaults to 300. |
promptColumnName | string | true | maxLength: 5000 |
The name of the column the custom model uses for prompt text input. |
targetColumnName | string | true | maxLength: 5000 |
The name of the column the custom model uses for prediction output. |
useCaseId | string¦null | false | The ID of the use case to associate with the validated custom model. |
CustomModelValidationStatus
"TESTING"
CustomModelValidationStatus
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
CustomModelValidationStatus | string | false | Status of custom model validation. |
Enumerated Values¶
Property | Value |
---|---|
CustomModelValidationStatus | [TESTING , PASSED , FAILED ] |
CustomModelVectorDatabaseValidationResponse
{
"creationDate": "2019-08-24T14:15:22Z",
"deploymentAccessData": {
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
},
"deploymentId": "string",
"deploymentName": "string",
"errorMessage": "Unknown vector database error occurred",
"id": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 0,
"promptColumnName": "string",
"targetColumnName": "string",
"tenantId": "string",
"useCaseId": "string",
"userId": "string",
"userName": "string",
"validationStatus": "TESTING"
}
CustomModelVectorDatabaseValidationResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
creationDate | string(date-time) | true | The creation date of the custom model validation (ISO 8601 formatted). | |
deploymentAccessData | DeploymentAccessDataApiFormatted¦null | true | The parameters used for accessing the deployment. | |
deploymentId | string | true | The ID of the custom model deployment. | |
deploymentName | string¦null | false | The name of the custom model deployment. | |
errorMessage | VectorDatabaseErrorMessages¦null | true | The error message associated with the validation error (if the validation failed). | |
id | string | true | The ID of the custom model validation. | |
modelId | string | true | The ID of the model used in the deployment. | |
name | string | true | The name of the validated custom model. | |
predictionTimeout | integer | true | The timeout in seconds for the prediction API used in this custom model validation. | |
promptColumnName | string | true | The name of the column the custom model uses for prompt text input. | |
targetColumnName | string | true | The name of the column the custom model uses for prediction output. | |
tenantId | string(uuid4) | true | The ID of the tenant the custom model validation belongs to. | |
useCaseId | string¦null | true | The ID of the use case associated with the validated custom model. | |
userId | string | true | The ID of the user that created this custom model validation. | |
userName | string¦null | false | The name of the user that created this custom model validation. | |
validationStatus | CustomModelValidationStatus | true | The status of the custom model validation. |
DeploymentAccessDataApiFormatted
{
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
}
DeploymentAccessDataApiFormatted
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
authorizationHeader | string | false | The Authorization header to use for the deployment. |
|
datarobotKey | string¦null | true | The server key associated with the prediction API. | |
inputType | DeploymentInputType | true | The format of the input data. | |
modelType | SupportedDeploymentType | true | The type of the target output the deployment produces. | |
predictionApiUrl | string | true | The URL of the deployment's prediction API. |
DeploymentInputType
"CSV"
DeploymentInputType
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
DeploymentInputType | string | false | The format of the input data submitted to a DataRobot deployment. |
Enumerated Values¶
Property | Value |
---|---|
DeploymentInputType | [CSV , JSON ] |
EditCustomModelValidationRequest
{
"deploymentId": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 1,
"promptColumnName": "string",
"targetColumnName": "string"
}
EditCustomModelValidationRequest
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
deploymentId | string¦null | false | If specified, changes the ID of the deployment associated with this custom model validation. | |
modelId | string¦null | false | If specified, changes the ID of the model associated with this custom model validation. | |
name | string¦null | false | maxLength: 5000 minLength: 1 minLength: 1 |
If specified, renames the custom model validation to this value. |
predictionTimeout | integer¦null | false | maximum: 1200 minimum: 1 |
If specified, sets the timeout in seconds for the prediction when validating a custom model. |
promptColumnName | string¦null | false | maxLength: 5000 |
If specified, changes the name of the column that will be used to format the prompt text input for the custom model deployment. |
targetColumnName | string¦null | false | maxLength: 5000 |
If specified, changes the name of the column that will be used to extract the prediction response from the custom model deployment. |
HTTPValidationErrorResponse
{
"detail": [
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
]
}
HTTPValidationErrorResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
detail | [ValidationError] | false | none |
ListCustomModelValidationSortQueryParam
"name"
ListCustomModelValidationSortQueryParam
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ListCustomModelValidationSortQueryParam | string | false | Sort order values for listing custom model validations. |
Enumerated Values¶
Property | Value |
---|---|
ListCustomModelValidationSortQueryParam | [name , -name , deploymentName , -deploymentName , userName , -userName , creationDate , -creationDate ] |
ListCustomModelVectorDatabaseValidationsResponse
{
"count": 0,
"data": [
{
"creationDate": "2019-08-24T14:15:22Z",
"deploymentAccessData": {
"authorizationHeader": "[REDACTED]",
"datarobotKey": "string",
"inputType": "CSV",
"modelType": "TEXT_GENERATION",
"predictionApiUrl": "string"
},
"deploymentId": "string",
"deploymentName": "string",
"errorMessage": "Unknown vector database error occurred",
"id": "string",
"modelId": "string",
"name": "string",
"predictionTimeout": 0,
"promptColumnName": "string",
"targetColumnName": "string",
"tenantId": "string",
"useCaseId": "string",
"userId": "string",
"userName": "string",
"validationStatus": "TESTING"
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
ListCustomModelVectorDatabaseValidationsResponse
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | true | The number of records on this page. | |
data | [CustomModelVectorDatabaseValidationResponse] | true | The list of records. | |
next | string¦null | true | The URL to the next page, or null if there is no such page. |
|
previous | string¦null | true | The URL to the previous page, or null if there is no such page. |
|
totalCount | integer | true | The total number of records. |
SupportedDeploymentType
"TEXT_GENERATION"
SupportedDeploymentType
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
SupportedDeploymentType | string | false | The type of the target output a DataRobot deployment produces. |
Enumerated Values¶
Property | Value |
---|---|
SupportedDeploymentType | [TEXT_GENERATION , UNSTRUCTURED , REGRESSION , MULTICLASS , BINARY , NOT_SUPPORTED ] |
ValidationError
{
"loc": [
"string"
],
"msg": "string",
"type": "string"
}
ValidationError
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
loc | [anyOf] | true | none |
anyOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | string | false | none |
or
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
» anonymous | integer | false | none |
continued
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
msg | string | true | none | |
type | string | true | none |
VectorDatabaseErrorMessages
"Unknown vector database error occurred"
VectorDatabaseErrorMessages
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
VectorDatabaseErrorMessages | string | false | Error messages for vector database errors. |
Enumerated Values¶
Property | Value |
---|---|
VectorDatabaseErrorMessages | [Unknown vector database error occurred , A vector database prediction timeout error occurred. , Downloading or finding embedding model weights failed , Loading dataset failed , All loaded documents are empty or contain no text , Raw loaded text dataset size exceeds the limit for the chosen embedding model , Splitting documents into text chunks failed , Generating embeddings from text chunks failed , Creating an index from embeddings failed , Storing vector database assets failed , Calcluating the size of stored vector database assets failed , API token was deleted or revoked , Document retrieval failed , Vector database was deleted , Loading the embedding model failed , External vector database connection is not available , External vector database deployment has been deleted , No access to external vector database deployment , Only unstructured deployment types are supported , An API token is required but was not provided in the request , Deployment prediction server did not accept the request , Deployment prediction does not comply with the expected format , API token was deleted or revoked , External embedding model connection is not available , External embedding deployment has been deleted , No access to external embedding deployment , Only unstructured deployment types are supported , An API token is required but was not provided in the request , Deployment prediction server did not accept the request , Deployment prediction does not comply with the expected format , Worker process was unexpectedly terminated ] |