Skip to content

Models

Use the endpoints described below to create and manage DataRobot models.

Create a model package

Operation path: POST /api/v2/modelPackages/fromJSON/

Authentication requirements: BearerAuth

Create a model package from json.

Body parameter

{
  "properties": {
    "datasets": {
      "description": "The dataset information for the model package.",
      "properties": {
        "holdoutDataCatalogId": {
          "description": "The ID for Holdout data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCatalogVersionId": {
          "description": "The version ID for Holdout data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCatalogId": {
          "description": "The ID for training data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCatalogVersionId": {
          "description": "The version ID for training data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "geospatialMonitoring": {
      "description": "Geospatial monitoring information for the model package",
      "properties": {
        "primaryLocationColumn": {
          "description": "The name of the geo-analysis column,",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "primaryLocationColumn"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "modelDescription": {
      "description": "The model description information for the model package.",
      "properties": {
        "buildEnvironmentType": {
          "description": "The build environment type of the model.",
          "enum": [
            "DataRobot",
            "Python",
            "R",
            "Java",
            "Julia",
            "Legacy",
            "Other"
          ],
          "type": "string"
        },
        "description": {
          "description": "A description of the model.",
          "maxLength": 2048,
          "type": [
            "string",
            "null"
          ]
        },
        "location": {
          "description": "The location of the model.",
          "maxLength": 2048,
          "type": [
            "string",
            "null"
          ]
        },
        "modelName": {
          "description": "The model name.",
          "maxLength": 512,
          "type": "string"
        }
      },
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "modelId": {
      "description": "The ID of the model.",
      "type": "string"
    },
    "name": {
      "description": "The model package name.",
      "maxLength": 1024,
      "type": "string"
    },
    "registeredModelName": {
      "description": "The registered model name.",
      "maxLength": 1024,
      "type": "string",
      "x-versionadded": "v2.39"
    },
    "target": {
      "description": "The target information for the model package.",
      "properties": {
        "classNames": {
          "description": "Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class.",
          "items": {
            "maxLength": 128,
            "type": "string"
          },
          "maxItems": 1000,
          "type": "array"
        },
        "name": {
          "description": "name of the target column",
          "maxLength": 128,
          "type": "string"
        },
        "predictionProbabilitiesColumn": {
          "description": "Field or column name containing prediction probabilities",
          "maxLength": 128,
          "type": [
            "string",
            "null"
          ]
        },
        "predictionThreshold": {
          "description": "Prediction threshold used for binary classification models",
          "maximum": 1,
          "minimum": 0,
          "type": [
            "number",
            "null"
          ]
        },
        "type": {
          "description": "Target type of the model.",
          "enum": [
            "Binary",
            "Regression",
            "Multiclass",
            "Multilabel",
            "TextGeneration",
            "GeoPoint",
            "AgenticWorkflow",
            "MCP"
          ],
          "type": "string"
        }
      },
      "required": [
        "name",
        "type"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "textGeneration": {
      "description": "Text generation information for the model package",
      "properties": {
        "prompt": {
          "description": "Name of the prompt column",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "prompt"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "timeseries": {
      "description": "Time series information for the model package.",
      "properties": {
        "datetimeColumnFormat": {
          "description": "The date format for the forecast date and forecast point column.",
          "type": [
            "string",
            "null"
          ]
        },
        "datetimeColumnName": {
          "description": "The name of the forecast date column.",
          "type": [
            "string",
            "null"
          ]
        },
        "effectiveFeatureDerivationWindowEnd": {
          "description": "A negative number or zero describing the end of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the \"real\" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.37"
        },
        "effectiveFeatureDerivationWindowStart": {
          "description": "A negative number or zero describing the start of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the \"real\" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.37"
        },
        "featureDerivationWindowEnd": {
          "description": "A negative number or zero defining the end point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -7 days would mean the feature derivation would be done with data ending at 7 days ago.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "featureDerivationWindowStart": {
          "description": "A negative number or zero defining the start point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -28 days would means the feature derivation would be done with data starting from 28 days ago.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "forecastDistanceColumnName": {
          "description": "The name of the forecast distance column.",
          "type": [
            "string",
            "null"
          ]
        },
        "forecastDistances": {
          "description": "A list of integer forecast distances.",
          "items": {
            "type": "integer"
          },
          "type": "array"
        },
        "forecastDistancesTimeUnit": {
          "description": "The time unit of forecast distances.",
          "enum": [
            "MICROSECOND",
            "MILLISECOND",
            "SECOND",
            "MINUTE",
            "HOUR",
            "DAY",
            "WEEK",
            "MONTH",
            "QUARTER",
            "YEAR"
          ],
          "type": "string"
        },
        "forecastPointColumnName": {
          "description": "The name of the forecast point column.",
          "type": [
            "string",
            "null"
          ]
        },
        "isCrossSeries": {
          "description": "true if the model is cross-series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "isNewSeriesSupport": {
          "default": false,
          "description": "true if the model is optimized to support new series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "isTraditionalTimeSeries": {
          "default": false,
          "description": "Determines if the model is a traditional time series model.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "seriesColumnName": {
          "description": "The name of the series column in the case of a multi-series date.",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "datetimeColumnFormat",
        "datetimeColumnName",
        "forecastDistanceColumnName",
        "forecastDistancesTimeUnit",
        "forecastPointColumnName"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    }
  },
  "required": [
    "name",
    "target"
  ],
  "type": "object",
  "x-versionadded": "v2.37"
}

Parameters

Name In Type Required Description
body body ModelPackageCreateExternal false none

Example responses

200 Response

{
  "properties": {
    "activeDeploymentCount": {
      "description": "Number of deployments currently using this model package",
      "type": "integer"
    },
    "buildStatus": {
      "description": "Model package build status",
      "enum": [
        "inProgress",
        "complete",
        "failed"
      ],
      "type": [
        "string",
        "null"
      ]
    },
    "capabilities": {
      "description": "Capabilities of the current model package.",
      "properties": {
        "supportsAutomaticActuals": {
          "description": "Whether inferring actual values from time series history data and automatically feeding them back for accuracy estimation is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsChallengerModels": {
          "description": "Whether Challenger Models are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsFeatureDriftTracking": {
          "description": "Whether Feature Drift is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsHumilityRecommendedRules": {
          "description": "Whether calculating values for recommended Humility Rules is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsHumilityRules": {
          "description": "Whether Humility Rules are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsHumilityRulesDefaultCalculations": {
          "description": "Whether calculating default values for Humility Rules is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2"
        },
        "supportsPredictionWarning": {
          "description": "Whether Prediction Warnings are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsRetraining": {
          "description": "Whether deployment supports retraining.",
          "type": "boolean",
          "x-versionadded": "v2.28",
          "x-versiondeprecated": "v2.29"
        },
        "supportsScoringCodeDownload": {
          "description": "Whether scoring code download is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsSecondaryDatasets": {
          "description": "If the deployments supports secondary datasets.",
          "type": "boolean",
          "x-versionadded": "v2.28",
          "x-versiondeprecated": "v2.29"
        },
        "supportsSegmentedAnalysisDriftAndAccuracy": {
          "description": "Whether tracking features in training and predictions data for segmented analysis is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsShapBasedPredictionExplanations": {
          "description": "Whether shap-based prediction explanations are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsTargetDriftTracking": {
          "description": "Whether Target Drift is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        }
      },
      "required": [
        "supportsChallengerModels",
        "supportsFeatureDriftTracking",
        "supportsHumilityRecommendedRules",
        "supportsHumilityRules",
        "supportsHumilityRulesDefaultCalculations",
        "supportsPredictionWarning",
        "supportsSecondaryDatasets",
        "supportsSegmentedAnalysisDriftAndAccuracy",
        "supportsShapBasedPredictionExplanations",
        "supportsTargetDriftTracking"
      ],
      "type": "object"
    },
    "datasets": {
      "description": "dataset information for the model package",
      "properties": {
        "baselineSegmentedBy": {
          "description": "Names of categorical features by which the training baseline was segmented. This allows for deployment prediction requests to be segmented by those same features. Segmenting the training baseline by these features allows for users to perform segmented analysis of Data Drift and Accuracy, and to compare the same subset of training and scoring data based on the selected segment attribute and segment value.",
          "items": {
            "type": "string"
          },
          "type": "array"
        },
        "datasetName": {
          "description": "Name of dataset used to train the model",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCatalogId": {
          "description": "ID for holdout data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCatalogVersionId": {
          "description": "Version ID for holdout data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCreatedAt": {
          "description": "Time when the holdout data item was created",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDataCreatorEmail": {
          "description": "Email of the user who created the holdout data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDataCreatorId": {
          "default": null,
          "description": "ID of the creator of the holdout data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDataCreatorName": {
          "description": "Name of the user who created the holdout data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDatasetName": {
          "description": "Name of dataset used for model holdout",
          "type": [
            "string",
            "null"
          ]
        },
        "targetHistogramBaseline": {
          "description": "Values used to establish the training baseline",
          "enum": [
            "predictions",
            "actuals"
          ],
          "type": "string"
        },
        "trainingDataCatalogId": {
          "description": "ID for training data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCatalogVersionId": {
          "description": "Version ID for training data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCreatedAt": {
          "description": "Time when the training data item was created",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataCreatorEmail": {
          "description": "Email of the user who created the training data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataCreatorId": {
          "default": null,
          "description": "ID of the creator of the training data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataCreatorName": {
          "description": "Name of the user who created the training data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataSize": {
          "description": "Number of rows in training data (used by DR models)",
          "type": "integer"
        }
      },
      "required": [
        "baselineSegmentedBy",
        "datasetName",
        "holdoutDataCatalogId",
        "holdoutDataCatalogVersionId",
        "holdoutDatasetName",
        "trainingDataCatalogId",
        "trainingDataCatalogVersionId"
      ],
      "type": "object"
    },
    "id": {
      "description": "ID of the Model package",
      "type": "string"
    },
    "importMeta": {
      "description": "Information from when this Model Package was first saved",
      "properties": {
        "containsFearPipeline": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with fear pipeline.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "containsFeaturelists": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with featurelists.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "containsLeaderboardMeta": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with leaderboard meta.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "containsProjectMeta": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with project meta.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "creatorFullName": {
          "description": "Full name of the person who created this model package",
          "type": [
            "string",
            "null"
          ]
        },
        "creatorId": {
          "description": "User ID of the person who created this Model Package",
          "type": "string"
        },
        "creatorUsername": {
          "description": "Username of the person who created this model package",
          "type": "string"
        },
        "dateCreated": {
          "description": "When this Model Package was created",
          "type": "string"
        },
        "originalFileName": {
          "description": "Exists for imported models only, the original file name that was uploaded",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "creatorFullName",
        "creatorId",
        "creatorUsername",
        "dateCreated",
        "originalFileName"
      ],
      "type": "object"
    },
    "isArchived": {
      "description": "Whether the model package is permanently archived (cannot be used in deployment or replacement)",
      "type": "boolean"
    },
    "isDeprecated": {
      "description": "Whether the model package is deprecated. eg. python2 models are deprecated.",
      "type": "boolean",
      "x-versionadded": "v2.29"
    },
    "mlpkgFileContents": {
      "description": "Information about the content of .mlpkg artifact",
      "properties": {
        "allTimeSeriesPredictionIntervals": {
          "description": "Whether .mlpkg contains TS prediction intervals computed for all percentiles",
          "type": [
            "boolean",
            "null"
          ],
          "x-versionadded": "v2.31"
        }
      },
      "type": "object"
    },
    "modelDescription": {
      "description": "model description information for the model package",
      "properties": {
        "buildEnvironmentType": {
          "description": "build environment type of the model",
          "enum": [
            "DataRobot",
            "Python",
            "R",
            "Java",
            "Other"
          ],
          "type": "string"
        },
        "description": {
          "description": "a description of the model",
          "type": [
            "string",
            "null"
          ]
        },
        "location": {
          "description": "location of the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatedAt": {
          "description": "time when the model was created",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatorEmail": {
          "description": "email of the user who created the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatorId": {
          "default": null,
          "description": "ID of the creator of the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatorName": {
          "description": "name of the user who created the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelName": {
          "description": "model name",
          "type": "string"
        }
      },
      "required": [
        "buildEnvironmentType",
        "description",
        "location"
      ],
      "type": "object"
    },
    "modelExecutionType": {
      "description": "Type of model package. `dedicated` (native DataRobot models) and `custom_inference_model` (user added inference models) both execute on DataRobot prediction servers, `external` do not",
      "enum": [
        "dedicated",
        "custom_inference_model",
        "external"
      ],
      "type": "string"
    },
    "modelId": {
      "description": "ID of the model",
      "type": "string"
    },
    "modelKind": {
      "description": "Model attribute information",
      "properties": {
        "isAnomalyDetectionModel": {
          "description": "true if this is an anomaly detection model",
          "type": "boolean"
        },
        "isCombinedModel": {
          "description": "true if model is a combined model",
          "type": "boolean",
          "x-versionadded": "v2.27"
        },
        "isFeatureDiscovery": {
          "description": "true if this model uses the Feature Discovery feature",
          "type": "boolean"
        },
        "isMultiseries": {
          "description": "true if model is multiseries",
          "type": "boolean"
        },
        "isTimeSeries": {
          "description": "true if model is time series",
          "type": "boolean"
        },
        "isUnsupervisedLearning": {
          "description": "true if model used unsupervised learning",
          "type": "boolean"
        }
      },
      "required": [
        "isAnomalyDetectionModel",
        "isCombinedModel",
        "isFeatureDiscovery",
        "isMultiseries",
        "isTimeSeries",
        "isUnsupervisedLearning"
      ],
      "type": "object"
    },
    "name": {
      "description": "Model package name",
      "type": "string"
    },
    "permissions": {
      "description": "List of action permissions the user making the request has on the model package",
      "items": {
        "type": "string"
      },
      "type": "array",
      "x-versionadded": "v2.20"
    },
    "sourceMeta": {
      "description": "Meta information from where this model was generated",
      "properties": {
        "customModelDetails": {
          "description": "Details of the custom model associated to this registered model version",
          "properties": {
            "createdAt": {
              "description": "Time when the custom model was created",
              "type": "string"
            },
            "creatorEmail": {
              "description": "Email of the user who created the custom model",
              "type": [
                "string",
                "null"
              ]
            },
            "creatorId": {
              "description": "ID of the creator of the custom model",
              "type": "string"
            },
            "creatorName": {
              "description": "Name of the user who created the custom model",
              "type": [
                "string",
                "null"
              ]
            },
            "id": {
              "description": "ID of the associated custom model",
              "type": "string"
            },
            "versionLabel": {
              "description": "Label of associated custom model version.",
              "type": [
                "string",
                "null"
              ],
              "x-versionadded": "v2.34"
            }
          },
          "required": [
            "createdAt",
            "creatorId",
            "id"
          ],
          "type": "object"
        },
        "environmentUrl": {
          "description": "If available, URL of the source model",
          "format": "uri",
          "type": [
            "string",
            "null"
          ]
        },
        "fips_140_2Enabled": {
          "description": "true if the model was built with FIPS-140-2",
          "type": "boolean"
        },
        "projectCreatedAt": {
          "description": "If available, time when the project was created",
          "type": [
            "string",
            "null"
          ]
        },
        "projectCreatorEmail": {
          "description": "If available, email of the user who created the project",
          "type": [
            "string",
            "null"
          ]
        },
        "projectCreatorId": {
          "default": null,
          "description": "If available, ID of the creator of the project",
          "type": [
            "string",
            "null"
          ]
        },
        "projectCreatorName": {
          "description": "If available, name of the user who created the project",
          "type": [
            "string",
            "null"
          ]
        },
        "projectId": {
          "description": "If available, the project id used for this model",
          "type": [
            "string",
            "null"
          ]
        },
        "projectName": {
          "description": "If available, the project name for this model",
          "type": [
            "string",
            "null"
          ]
        },
        "scoringCode": {
          "description": "If available, information about the model's scoring code",
          "properties": {
            "dataRobotPredictionVersion": {
              "description": "DataRobot prediction API version for the scoring code",
              "type": [
                "string",
                "null"
              ]
            },
            "location": {
              "description": "Location of the scoring code",
              "enum": [
                "local_leaderboard",
                "mlpkg"
              ],
              "type": [
                "string",
                "null"
              ]
            }
          },
          "required": [
            "dataRobotPredictionVersion",
            "location"
          ],
          "type": "object"
        },
        "useCaseDetails": {
          "description": "Details of the use-case associated to this registered model version",
          "properties": {
            "createdAt": {
              "description": "Time when use-case was created",
              "type": "string"
            },
            "creatorEmail": {
              "description": "Email of the user who created use-case",
              "type": [
                "string",
                "null"
              ]
            },
            "creatorId": {
              "description": "ID of the creator of the use-case",
              "type": "string"
            },
            "creatorName": {
              "description": "Name of the user who created use-case",
              "type": [
                "string",
                "null"
              ]
            },
            "id": {
              "description": "ID of the associated use-case",
              "type": "string"
            },
            "name": {
              "description": "Name of the use case at the moment of creation",
              "type": [
                "string",
                "null"
              ]
            }
          },
          "required": [
            "createdAt",
            "creatorId",
            "id"
          ],
          "type": "object"
        }
      },
      "required": [
        "environmentUrl",
        "projectId",
        "projectName",
        "scoringCode"
      ],
      "type": "object"
    },
    "target": {
      "description": "target information for the model package",
      "properties": {
        "classCount": {
          "description": "Number of classes for classification models.",
          "minimum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "classNames": {
          "description": "Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class. Limited to 100 returned for Multiclass.",
          "items": {
            "type": "string"
          },
          "maxItems": 100,
          "type": "array"
        },
        "name": {
          "description": "name of the target column",
          "type": "string"
        },
        "predictionProbabilitiesColumn": {
          "description": "Field or column name containing prediction probabilities",
          "type": [
            "string",
            "null"
          ]
        },
        "predictionThreshold": {
          "description": "Prediction threshold used for binary classification models",
          "maximum": 1,
          "minimum": 0,
          "type": [
            "number",
            "null"
          ]
        },
        "type": {
          "description": "Target type of the model.",
          "enum": [
            "Binary",
            "Regression",
            "Multiclass",
            "Multilabel",
            "TextGeneration",
            "GeoPoint",
            "AgenticWorkflow",
            "MCP"
          ],
          "type": "string"
        }
      },
      "required": [
        "classCount",
        "classNames",
        "name",
        "predictionProbabilitiesColumn",
        "predictionThreshold",
        "type"
      ],
      "type": "object"
    },
    "timeseries": {
      "description": "time series information for the model package",
      "properties": {
        "datetimeColumnFormat": {
          "description": "Date format for forecast date and forecast point column",
          "type": [
            "string",
            "null"
          ]
        },
        "datetimeColumnName": {
          "description": "Name of the forecast date column",
          "type": [
            "string",
            "null"
          ]
        },
        "effectiveFeatureDerivationWindowEnd": {
          "description": "Same concept as `featureDerivationWindowEnd` which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the \"real\" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.25"
        },
        "effectiveFeatureDerivationWindowStart": {
          "description": "Same concept as `featureDerivationWindowStart` which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the \"real\" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.25"
        },
        "featureDerivationWindowEnd": {
          "description": "Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should end.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "featureDerivationWindowStart": {
          "description": "Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should begin.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "forecastDistanceColumnName": {
          "description": "Name of the forecast distance column",
          "type": [
            "string",
            "null"
          ]
        },
        "forecastDistances": {
          "description": "List of integer forecast distances",
          "items": {
            "type": "integer"
          },
          "type": "array"
        },
        "forecastDistancesTimeUnit": {
          "description": "The time unit of forecast distances",
          "enum": [
            "MICROSECOND",
            "MILLISECOND",
            "SECOND",
            "MINUTE",
            "HOUR",
            "DAY",
            "WEEK",
            "MONTH",
            "QUARTER",
            "YEAR"
          ],
          "type": [
            "string",
            "null"
          ]
        },
        "forecastPointColumnName": {
          "description": "Name of the forecast point column",
          "type": [
            "string",
            "null"
          ]
        },
        "isCrossSeries": {
          "description": "true if the model is cross-series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "isNewSeriesSupport": {
          "description": "true if the model is optimized to support new series.",
          "type": [
            "boolean",
            "null"
          ],
          "x-versionadded": "v2.25"
        },
        "isTraditionalTimeSeries": {
          "description": "true if the model is traditional time series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "seriesColumnName": {
          "description": "Name of the series column in case of multi-series date",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "datetimeColumnFormat",
        "datetimeColumnName",
        "effectiveFeatureDerivationWindowEnd",
        "effectiveFeatureDerivationWindowStart",
        "featureDerivationWindowEnd",
        "featureDerivationWindowStart",
        "forecastDistanceColumnName",
        "forecastDistances",
        "forecastDistancesTimeUnit",
        "forecastPointColumnName",
        "isCrossSeries",
        "isNewSeriesSupport",
        "isTraditionalTimeSeries",
        "seriesColumnName"
      ],
      "type": "object"
    },
    "updatedBy": {
      "description": "Information on the user who last modified the registered model",
      "properties": {
        "email": {
          "description": "Email of the user",
          "type": [
            "string",
            "null"
          ]
        },
        "id": {
          "description": "ID of the user",
          "type": "string"
        },
        "name": {
          "description": "Full name of the user",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "email",
        "id",
        "name"
      ],
      "type": "object"
    },
    "userProvidedId": {
      "description": "A user-provided unique ID associated with the given custom inference model.",
      "type": "string"
    }
  },
  "required": [
    "activeDeploymentCount",
    "capabilities",
    "datasets",
    "id",
    "importMeta",
    "isArchived",
    "isDeprecated",
    "modelDescription",
    "modelExecutionType",
    "modelId",
    "modelKind",
    "name",
    "permissions",
    "sourceMeta",
    "target",
    "timeseries",
    "updatedBy"
  ],
  "type": "object"
}

Responses

Status Meaning Description Schema
200 OK none ModelPackageRetrieveResponse

Retrieve an archive (tar by project ID

Operation path: GET /api/v2/projects/{projectId}/models/{modelId}/logs/

Authentication requirements: BearerAuth

Retrieve an archive (tar.gz) of the logs produced and persisted by a model. Note that only blueprints with custom tasks create persistent logs - this will not work with any other type of model.

Parameters

Name In Type Required Description
projectId path string true The project ID
modelId path string true The model ID

Example responses

200 Response

{
  "properties": {
    "data": {
      "description": "An archive (tar.gz) of the logs produced and persisted by a model.",
      "format": "binary",
      "type": "string"
    }
  },
  "required": [
    "data"
  ],
  "type": "object"
}

Responses

Status Meaning Description Schema
200 OK An archive (tar.gz) of the logs produced and persisted by a model. PersistentLogsForModelWithCustomTasksRetrieveResponse
403 Forbidden User does not have permissions to fetch model logs. None
404 Not Found Logs for this model could not be found. None

Retrieve training artifact by id by project ID

Operation path: GET /api/v2/projects/{projectId}/models/{modelId}/trainingArtifact/

Authentication requirements: BearerAuth

Retrieve an archive (tar.gz) of the artifacts produced and persisted by a model. Note that only blueprints with custom tasks create these artifacts - this will not work with any other type of model.

Parameters

Name In Type Required Description
projectId path string true The project ID
modelId path string true The model ID

Example responses

200 Response

{
  "properties": {
    "data": {
      "description": "An archive (tar.gz) of the artifacts produced and persisted by a model.",
      "format": "binary",
      "type": "string"
    }
  },
  "required": [
    "data"
  ],
  "type": "object"
}

Responses

Status Meaning Description Schema
200 OK An archive (tar.gz) of the artifacts produced by this model. ArtifactsForModelWithCustomTasksRetrieveResponse
403 Forbidden User does not have permissions to fetch this artifact. None
404 Not Found The model with this modelID does not have any artifacts. None

Schemas

ArtifactsForModelWithCustomTasksRetrieveResponse

{
  "properties": {
    "data": {
      "description": "An archive (tar.gz) of the artifacts produced and persisted by a model.",
      "format": "binary",
      "type": "string"
    }
  },
  "required": [
    "data"
  ],
  "type": "object"
}

Properties

Name Type Required Restrictions Description
data string(binary) true An archive (tar.gz) of the artifacts produced and persisted by a model.

CustomModelDetails

{
  "description": "Details of the custom model associated to this registered model version",
  "properties": {
    "createdAt": {
      "description": "Time when the custom model was created",
      "type": "string"
    },
    "creatorEmail": {
      "description": "Email of the user who created the custom model",
      "type": [
        "string",
        "null"
      ]
    },
    "creatorId": {
      "description": "ID of the creator of the custom model",
      "type": "string"
    },
    "creatorName": {
      "description": "Name of the user who created the custom model",
      "type": [
        "string",
        "null"
      ]
    },
    "id": {
      "description": "ID of the associated custom model",
      "type": "string"
    },
    "versionLabel": {
      "description": "Label of associated custom model version.",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    }
  },
  "required": [
    "createdAt",
    "creatorId",
    "id"
  ],
  "type": "object"
}

Details of the custom model associated to this registered model version

Properties

Name Type Required Restrictions Description
createdAt string true Time when the custom model was created
creatorEmail string,null false Email of the user who created the custom model
creatorId string true ID of the creator of the custom model
creatorName string,null false Name of the user who created the custom model
id string true ID of the associated custom model
versionLabel string,null false Label of associated custom model version.

MlpkgFileContents

{
  "description": "Information about the content of .mlpkg artifact",
  "properties": {
    "allTimeSeriesPredictionIntervals": {
      "description": "Whether .mlpkg contains TS prediction intervals computed for all percentiles",
      "type": [
        "boolean",
        "null"
      ],
      "x-versionadded": "v2.31"
    }
  },
  "type": "object"
}

Information about the content of .mlpkg artifact

Properties

Name Type Required Restrictions Description
allTimeSeriesPredictionIntervals boolean,null false Whether .mlpkg contains TS prediction intervals computed for all percentiles

ModelPackageCapabilities

{
  "description": "Capabilities of the current model package.",
  "properties": {
    "supportsAutomaticActuals": {
      "description": "Whether inferring actual values from time series history data and automatically feeding them back for accuracy estimation is supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsChallengerModels": {
      "description": "Whether Challenger Models are supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsFeatureDriftTracking": {
      "description": "Whether Feature Drift is supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsHumilityRecommendedRules": {
      "description": "Whether calculating values for recommended Humility Rules is supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsHumilityRules": {
      "description": "Whether Humility Rules are supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsHumilityRulesDefaultCalculations": {
      "description": "Whether calculating default values for Humility Rules is supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2"
    },
    "supportsPredictionWarning": {
      "description": "Whether Prediction Warnings are supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsRetraining": {
      "description": "Whether deployment supports retraining.",
      "type": "boolean",
      "x-versionadded": "v2.28",
      "x-versiondeprecated": "v2.29"
    },
    "supportsScoringCodeDownload": {
      "description": "Whether scoring code download is supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsSecondaryDatasets": {
      "description": "If the deployments supports secondary datasets.",
      "type": "boolean",
      "x-versionadded": "v2.28",
      "x-versiondeprecated": "v2.29"
    },
    "supportsSegmentedAnalysisDriftAndAccuracy": {
      "description": "Whether tracking features in training and predictions data for segmented analysis is supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsShapBasedPredictionExplanations": {
      "description": "Whether shap-based prediction explanations are supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    },
    "supportsTargetDriftTracking": {
      "description": "Whether Target Drift is supported by this model package.",
      "type": "boolean",
      "x-versionadded": "v2.25.2",
      "x-versiondeprecated": "v2.29"
    }
  },
  "required": [
    "supportsChallengerModels",
    "supportsFeatureDriftTracking",
    "supportsHumilityRecommendedRules",
    "supportsHumilityRules",
    "supportsHumilityRulesDefaultCalculations",
    "supportsPredictionWarning",
    "supportsSecondaryDatasets",
    "supportsSegmentedAnalysisDriftAndAccuracy",
    "supportsShapBasedPredictionExplanations",
    "supportsTargetDriftTracking"
  ],
  "type": "object"
}

Capabilities of the current model package.

Properties

Name Type Required Restrictions Description
supportsAutomaticActuals boolean false Whether inferring actual values from time series history data and automatically feeding them back for accuracy estimation is supported by this model package.
supportsChallengerModels boolean true Whether Challenger Models are supported by this model package.
supportsFeatureDriftTracking boolean true Whether Feature Drift is supported by this model package.
supportsHumilityRecommendedRules boolean true Whether calculating values for recommended Humility Rules is supported by this model package.
supportsHumilityRules boolean true Whether Humility Rules are supported by this model package.
supportsHumilityRulesDefaultCalculations boolean true Whether calculating default values for Humility Rules is supported by this model package.
supportsPredictionWarning boolean true Whether Prediction Warnings are supported by this model package.
supportsRetraining boolean false Whether deployment supports retraining.
supportsScoringCodeDownload boolean false Whether scoring code download is supported by this model package.
supportsSecondaryDatasets boolean true If the deployments supports secondary datasets.
supportsSegmentedAnalysisDriftAndAccuracy boolean true Whether tracking features in training and predictions data for segmented analysis is supported by this model package.
supportsShapBasedPredictionExplanations boolean true Whether shap-based prediction explanations are supported by this model package.
supportsTargetDriftTracking boolean true Whether Target Drift is supported by this model package.

ModelPackageCreateExternal

{
  "properties": {
    "datasets": {
      "description": "The dataset information for the model package.",
      "properties": {
        "holdoutDataCatalogId": {
          "description": "The ID for Holdout data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCatalogVersionId": {
          "description": "The version ID for Holdout data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCatalogId": {
          "description": "The ID for training data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCatalogVersionId": {
          "description": "The version ID for training data (returned from uploading a dataset).",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "geospatialMonitoring": {
      "description": "Geospatial monitoring information for the model package",
      "properties": {
        "primaryLocationColumn": {
          "description": "The name of the geo-analysis column,",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "primaryLocationColumn"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "modelDescription": {
      "description": "The model description information for the model package.",
      "properties": {
        "buildEnvironmentType": {
          "description": "The build environment type of the model.",
          "enum": [
            "DataRobot",
            "Python",
            "R",
            "Java",
            "Julia",
            "Legacy",
            "Other"
          ],
          "type": "string"
        },
        "description": {
          "description": "A description of the model.",
          "maxLength": 2048,
          "type": [
            "string",
            "null"
          ]
        },
        "location": {
          "description": "The location of the model.",
          "maxLength": 2048,
          "type": [
            "string",
            "null"
          ]
        },
        "modelName": {
          "description": "The model name.",
          "maxLength": 512,
          "type": "string"
        }
      },
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "modelId": {
      "description": "The ID of the model.",
      "type": "string"
    },
    "name": {
      "description": "The model package name.",
      "maxLength": 1024,
      "type": "string"
    },
    "registeredModelName": {
      "description": "The registered model name.",
      "maxLength": 1024,
      "type": "string",
      "x-versionadded": "v2.39"
    },
    "target": {
      "description": "The target information for the model package.",
      "properties": {
        "classNames": {
          "description": "Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class.",
          "items": {
            "maxLength": 128,
            "type": "string"
          },
          "maxItems": 1000,
          "type": "array"
        },
        "name": {
          "description": "name of the target column",
          "maxLength": 128,
          "type": "string"
        },
        "predictionProbabilitiesColumn": {
          "description": "Field or column name containing prediction probabilities",
          "maxLength": 128,
          "type": [
            "string",
            "null"
          ]
        },
        "predictionThreshold": {
          "description": "Prediction threshold used for binary classification models",
          "maximum": 1,
          "minimum": 0,
          "type": [
            "number",
            "null"
          ]
        },
        "type": {
          "description": "Target type of the model.",
          "enum": [
            "Binary",
            "Regression",
            "Multiclass",
            "Multilabel",
            "TextGeneration",
            "GeoPoint",
            "AgenticWorkflow",
            "MCP"
          ],
          "type": "string"
        }
      },
      "required": [
        "name",
        "type"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "textGeneration": {
      "description": "Text generation information for the model package",
      "properties": {
        "prompt": {
          "description": "Name of the prompt column",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "prompt"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    },
    "timeseries": {
      "description": "Time series information for the model package.",
      "properties": {
        "datetimeColumnFormat": {
          "description": "The date format for the forecast date and forecast point column.",
          "type": [
            "string",
            "null"
          ]
        },
        "datetimeColumnName": {
          "description": "The name of the forecast date column.",
          "type": [
            "string",
            "null"
          ]
        },
        "effectiveFeatureDerivationWindowEnd": {
          "description": "A negative number or zero describing the end of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the \"real\" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.37"
        },
        "effectiveFeatureDerivationWindowStart": {
          "description": "A negative number or zero describing the start of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the \"real\" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.37"
        },
        "featureDerivationWindowEnd": {
          "description": "A negative number or zero defining the end point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -7 days would mean the feature derivation would be done with data ending at 7 days ago.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "featureDerivationWindowStart": {
          "description": "A negative number or zero defining the start point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -28 days would means the feature derivation would be done with data starting from 28 days ago.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "forecastDistanceColumnName": {
          "description": "The name of the forecast distance column.",
          "type": [
            "string",
            "null"
          ]
        },
        "forecastDistances": {
          "description": "A list of integer forecast distances.",
          "items": {
            "type": "integer"
          },
          "type": "array"
        },
        "forecastDistancesTimeUnit": {
          "description": "The time unit of forecast distances.",
          "enum": [
            "MICROSECOND",
            "MILLISECOND",
            "SECOND",
            "MINUTE",
            "HOUR",
            "DAY",
            "WEEK",
            "MONTH",
            "QUARTER",
            "YEAR"
          ],
          "type": "string"
        },
        "forecastPointColumnName": {
          "description": "The name of the forecast point column.",
          "type": [
            "string",
            "null"
          ]
        },
        "isCrossSeries": {
          "description": "true if the model is cross-series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "isNewSeriesSupport": {
          "default": false,
          "description": "true if the model is optimized to support new series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "isTraditionalTimeSeries": {
          "default": false,
          "description": "Determines if the model is a traditional time series model.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "seriesColumnName": {
          "description": "The name of the series column in the case of a multi-series date.",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "datetimeColumnFormat",
        "datetimeColumnName",
        "forecastDistanceColumnName",
        "forecastDistancesTimeUnit",
        "forecastPointColumnName"
      ],
      "type": "object",
      "x-versionadded": "v2.37"
    }
  },
  "required": [
    "name",
    "target"
  ],
  "type": "object",
  "x-versionadded": "v2.37"
}

Properties

Name Type Required Restrictions Description
datasets ModelPackageDatasetsCreate false The dataset information for the model package.
geospatialMonitoring ModelPackageExternalGeospatialMonitoring false Geospatial monitoring information for the model package
modelDescription ModelPackageModelDescriptionCreate false The model description information for the model package.
modelId string false The ID of the model.
name string true maxLength: 1024
The model package name.
registeredModelName string false maxLength: 1024
The registered model name.
target ModelPackageTargetCreate true The target information for the model package.
textGeneration ModelPackageTextGeneration false Text generation information for the model package
timeseries ModelPackageTimeseriesCreate false Time series information for the model package.

ModelPackageDatasets

{
  "description": "dataset information for the model package",
  "properties": {
    "baselineSegmentedBy": {
      "description": "Names of categorical features by which the training baseline was segmented. This allows for deployment prediction requests to be segmented by those same features. Segmenting the training baseline by these features allows for users to perform segmented analysis of Data Drift and Accuracy, and to compare the same subset of training and scoring data based on the selected segment attribute and segment value.",
      "items": {
        "type": "string"
      },
      "type": "array"
    },
    "datasetName": {
      "description": "Name of dataset used to train the model",
      "type": [
        "string",
        "null"
      ]
    },
    "holdoutDataCatalogId": {
      "description": "ID for holdout data (returned from uploading a data set)",
      "type": [
        "string",
        "null"
      ]
    },
    "holdoutDataCatalogVersionId": {
      "description": "Version ID for holdout data (returned from uploading a data set)",
      "type": [
        "string",
        "null"
      ]
    },
    "holdoutDataCreatedAt": {
      "description": "Time when the holdout data item was created",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "holdoutDataCreatorEmail": {
      "description": "Email of the user who created the holdout data item",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "holdoutDataCreatorId": {
      "default": null,
      "description": "ID of the creator of the holdout data item",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "holdoutDataCreatorName": {
      "description": "Name of the user who created the holdout data item",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "holdoutDatasetName": {
      "description": "Name of dataset used for model holdout",
      "type": [
        "string",
        "null"
      ]
    },
    "targetHistogramBaseline": {
      "description": "Values used to establish the training baseline",
      "enum": [
        "predictions",
        "actuals"
      ],
      "type": "string"
    },
    "trainingDataCatalogId": {
      "description": "ID for training data (returned from uploading a data set)",
      "type": [
        "string",
        "null"
      ]
    },
    "trainingDataCatalogVersionId": {
      "description": "Version ID for training data (returned from uploading a data set)",
      "type": [
        "string",
        "null"
      ]
    },
    "trainingDataCreatedAt": {
      "description": "Time when the training data item was created",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "trainingDataCreatorEmail": {
      "description": "Email of the user who created the training data item",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "trainingDataCreatorId": {
      "default": null,
      "description": "ID of the creator of the training data item",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "trainingDataCreatorName": {
      "description": "Name of the user who created the training data item",
      "type": [
        "string",
        "null"
      ],
      "x-versionadded": "v2.34"
    },
    "trainingDataSize": {
      "description": "Number of rows in training data (used by DR models)",
      "type": "integer"
    }
  },
  "required": [
    "baselineSegmentedBy",
    "datasetName",
    "holdoutDataCatalogId",
    "holdoutDataCatalogVersionId",
    "holdoutDatasetName",
    "trainingDataCatalogId",
    "trainingDataCatalogVersionId"
  ],
  "type": "object"
}

dataset information for the model package

Properties

Name Type Required Restrictions Description
baselineSegmentedBy [string] true Names of categorical features by which the training baseline was segmented. This allows for deployment prediction requests to be segmented by those same features. Segmenting the training baseline by these features allows for users to perform segmented analysis of Data Drift and Accuracy, and to compare the same subset of training and scoring data based on the selected segment attribute and segment value.
datasetName string,null true Name of dataset used to train the model
holdoutDataCatalogId string,null true ID for holdout data (returned from uploading a data set)
holdoutDataCatalogVersionId string,null true Version ID for holdout data (returned from uploading a data set)
holdoutDataCreatedAt string,null false Time when the holdout data item was created
holdoutDataCreatorEmail string,null false Email of the user who created the holdout data item
holdoutDataCreatorId string,null false ID of the creator of the holdout data item
holdoutDataCreatorName string,null false Name of the user who created the holdout data item
holdoutDatasetName string,null true Name of dataset used for model holdout
targetHistogramBaseline string false Values used to establish the training baseline
trainingDataCatalogId string,null true ID for training data (returned from uploading a data set)
trainingDataCatalogVersionId string,null true Version ID for training data (returned from uploading a data set)
trainingDataCreatedAt string,null false Time when the training data item was created
trainingDataCreatorEmail string,null false Email of the user who created the training data item
trainingDataCreatorId string,null false ID of the creator of the training data item
trainingDataCreatorName string,null false Name of the user who created the training data item
trainingDataSize integer false Number of rows in training data (used by DR models)

Enumerated Values

Property Value
targetHistogramBaseline [predictions, actuals]

ModelPackageDatasetsCreate

{
  "description": "The dataset information for the model package.",
  "properties": {
    "holdoutDataCatalogId": {
      "description": "The ID for Holdout data (returned from uploading a dataset).",
      "type": [
        "string",
        "null"
      ]
    },
    "holdoutDataCatalogVersionId": {
      "description": "The version ID for Holdout data (returned from uploading a dataset).",
      "type": [
        "string",
        "null"
      ]
    },
    "trainingDataCatalogId": {
      "description": "The ID for training data (returned from uploading a dataset).",
      "type": [
        "string",
        "null"
      ]
    },
    "trainingDataCatalogVersionId": {
      "description": "The version ID for training data (returned from uploading a dataset).",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "type": "object",
  "x-versionadded": "v2.37"
}

The dataset information for the model package.

Properties

Name Type Required Restrictions Description
holdoutDataCatalogId string,null false The ID for Holdout data (returned from uploading a dataset).
holdoutDataCatalogVersionId string,null false The version ID for Holdout data (returned from uploading a dataset).
trainingDataCatalogId string,null false The ID for training data (returned from uploading a dataset).
trainingDataCatalogVersionId string,null false The version ID for training data (returned from uploading a dataset).

ModelPackageExternalGeospatialMonitoring

{
  "description": "Geospatial monitoring information for the model package",
  "properties": {
    "primaryLocationColumn": {
      "description": "The name of the geo-analysis column,",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "primaryLocationColumn"
  ],
  "type": "object",
  "x-versionadded": "v2.37"
}

Geospatial monitoring information for the model package

Properties

Name Type Required Restrictions Description
primaryLocationColumn string,null true The name of the geo-analysis column,

ModelPackageImportMeta

{
  "description": "Information from when this Model Package was first saved",
  "properties": {
    "containsFearPipeline": {
      "description": "Exists for imported models only, indicates thatmodel package contains file with fear pipeline.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "containsFeaturelists": {
      "description": "Exists for imported models only, indicates thatmodel package contains file with featurelists.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "containsLeaderboardMeta": {
      "description": "Exists for imported models only, indicates thatmodel package contains file with leaderboard meta.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "containsProjectMeta": {
      "description": "Exists for imported models only, indicates thatmodel package contains file with project meta.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "creatorFullName": {
      "description": "Full name of the person who created this model package",
      "type": [
        "string",
        "null"
      ]
    },
    "creatorId": {
      "description": "User ID of the person who created this Model Package",
      "type": "string"
    },
    "creatorUsername": {
      "description": "Username of the person who created this model package",
      "type": "string"
    },
    "dateCreated": {
      "description": "When this Model Package was created",
      "type": "string"
    },
    "originalFileName": {
      "description": "Exists for imported models only, the original file name that was uploaded",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "creatorFullName",
    "creatorId",
    "creatorUsername",
    "dateCreated",
    "originalFileName"
  ],
  "type": "object"
}

Information from when this Model Package was first saved

Properties

Name Type Required Restrictions Description
containsFearPipeline boolean,null false Exists for imported models only, indicates thatmodel package contains file with fear pipeline.
containsFeaturelists boolean,null false Exists for imported models only, indicates thatmodel package contains file with featurelists.
containsLeaderboardMeta boolean,null false Exists for imported models only, indicates thatmodel package contains file with leaderboard meta.
containsProjectMeta boolean,null false Exists for imported models only, indicates thatmodel package contains file with project meta.
creatorFullName string,null true Full name of the person who created this model package
creatorId string true User ID of the person who created this Model Package
creatorUsername string true Username of the person who created this model package
dateCreated string true When this Model Package was created
originalFileName string,null true Exists for imported models only, the original file name that was uploaded

ModelPackageModelDescription

{
  "description": "model description information for the model package",
  "properties": {
    "buildEnvironmentType": {
      "description": "build environment type of the model",
      "enum": [
        "DataRobot",
        "Python",
        "R",
        "Java",
        "Other"
      ],
      "type": "string"
    },
    "description": {
      "description": "a description of the model",
      "type": [
        "string",
        "null"
      ]
    },
    "location": {
      "description": "location of the model",
      "type": [
        "string",
        "null"
      ]
    },
    "modelCreatedAt": {
      "description": "time when the model was created",
      "type": [
        "string",
        "null"
      ]
    },
    "modelCreatorEmail": {
      "description": "email of the user who created the model",
      "type": [
        "string",
        "null"
      ]
    },
    "modelCreatorId": {
      "default": null,
      "description": "ID of the creator of the model",
      "type": [
        "string",
        "null"
      ]
    },
    "modelCreatorName": {
      "description": "name of the user who created the model",
      "type": [
        "string",
        "null"
      ]
    },
    "modelName": {
      "description": "model name",
      "type": "string"
    }
  },
  "required": [
    "buildEnvironmentType",
    "description",
    "location"
  ],
  "type": "object"
}

model description information for the model package

Properties

Name Type Required Restrictions Description
buildEnvironmentType string true build environment type of the model
description string,null true a description of the model
location string,null true location of the model
modelCreatedAt string,null false time when the model was created
modelCreatorEmail string,null false email of the user who created the model
modelCreatorId string,null false ID of the creator of the model
modelCreatorName string,null false name of the user who created the model
modelName string false model name

Enumerated Values

Property Value
buildEnvironmentType [DataRobot, Python, R, Java, Other]

ModelPackageModelDescriptionCreate

{
  "description": "The model description information for the model package.",
  "properties": {
    "buildEnvironmentType": {
      "description": "The build environment type of the model.",
      "enum": [
        "DataRobot",
        "Python",
        "R",
        "Java",
        "Julia",
        "Legacy",
        "Other"
      ],
      "type": "string"
    },
    "description": {
      "description": "A description of the model.",
      "maxLength": 2048,
      "type": [
        "string",
        "null"
      ]
    },
    "location": {
      "description": "The location of the model.",
      "maxLength": 2048,
      "type": [
        "string",
        "null"
      ]
    },
    "modelName": {
      "description": "The model name.",
      "maxLength": 512,
      "type": "string"
    }
  },
  "type": "object",
  "x-versionadded": "v2.37"
}

The model description information for the model package.

Properties

Name Type Required Restrictions Description
buildEnvironmentType string false The build environment type of the model.
description string,null false maxLength: 2048
A description of the model.
location string,null false maxLength: 2048
The location of the model.
modelName string false maxLength: 512
The model name.

Enumerated Values

Property Value
buildEnvironmentType [DataRobot, Python, R, Java, Julia, Legacy, Other]

ModelPackageModelKind

{
  "description": "Model attribute information",
  "properties": {
    "isAnomalyDetectionModel": {
      "description": "true if this is an anomaly detection model",
      "type": "boolean"
    },
    "isCombinedModel": {
      "description": "true if model is a combined model",
      "type": "boolean",
      "x-versionadded": "v2.27"
    },
    "isFeatureDiscovery": {
      "description": "true if this model uses the Feature Discovery feature",
      "type": "boolean"
    },
    "isMultiseries": {
      "description": "true if model is multiseries",
      "type": "boolean"
    },
    "isTimeSeries": {
      "description": "true if model is time series",
      "type": "boolean"
    },
    "isUnsupervisedLearning": {
      "description": "true if model used unsupervised learning",
      "type": "boolean"
    }
  },
  "required": [
    "isAnomalyDetectionModel",
    "isCombinedModel",
    "isFeatureDiscovery",
    "isMultiseries",
    "isTimeSeries",
    "isUnsupervisedLearning"
  ],
  "type": "object"
}

Model attribute information

Properties

Name Type Required Restrictions Description
isAnomalyDetectionModel boolean true true if this is an anomaly detection model
isCombinedModel boolean true true if model is a combined model
isFeatureDiscovery boolean true true if this model uses the Feature Discovery feature
isMultiseries boolean true true if model is multiseries
isTimeSeries boolean true true if model is time series
isUnsupervisedLearning boolean true true if model used unsupervised learning

ModelPackageRetrieveResponse

{
  "properties": {
    "activeDeploymentCount": {
      "description": "Number of deployments currently using this model package",
      "type": "integer"
    },
    "buildStatus": {
      "description": "Model package build status",
      "enum": [
        "inProgress",
        "complete",
        "failed"
      ],
      "type": [
        "string",
        "null"
      ]
    },
    "capabilities": {
      "description": "Capabilities of the current model package.",
      "properties": {
        "supportsAutomaticActuals": {
          "description": "Whether inferring actual values from time series history data and automatically feeding them back for accuracy estimation is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsChallengerModels": {
          "description": "Whether Challenger Models are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsFeatureDriftTracking": {
          "description": "Whether Feature Drift is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsHumilityRecommendedRules": {
          "description": "Whether calculating values for recommended Humility Rules is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsHumilityRules": {
          "description": "Whether Humility Rules are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsHumilityRulesDefaultCalculations": {
          "description": "Whether calculating default values for Humility Rules is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2"
        },
        "supportsPredictionWarning": {
          "description": "Whether Prediction Warnings are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsRetraining": {
          "description": "Whether deployment supports retraining.",
          "type": "boolean",
          "x-versionadded": "v2.28",
          "x-versiondeprecated": "v2.29"
        },
        "supportsScoringCodeDownload": {
          "description": "Whether scoring code download is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsSecondaryDatasets": {
          "description": "If the deployments supports secondary datasets.",
          "type": "boolean",
          "x-versionadded": "v2.28",
          "x-versiondeprecated": "v2.29"
        },
        "supportsSegmentedAnalysisDriftAndAccuracy": {
          "description": "Whether tracking features in training and predictions data for segmented analysis is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsShapBasedPredictionExplanations": {
          "description": "Whether shap-based prediction explanations are supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        },
        "supportsTargetDriftTracking": {
          "description": "Whether Target Drift is supported by this model package.",
          "type": "boolean",
          "x-versionadded": "v2.25.2",
          "x-versiondeprecated": "v2.29"
        }
      },
      "required": [
        "supportsChallengerModels",
        "supportsFeatureDriftTracking",
        "supportsHumilityRecommendedRules",
        "supportsHumilityRules",
        "supportsHumilityRulesDefaultCalculations",
        "supportsPredictionWarning",
        "supportsSecondaryDatasets",
        "supportsSegmentedAnalysisDriftAndAccuracy",
        "supportsShapBasedPredictionExplanations",
        "supportsTargetDriftTracking"
      ],
      "type": "object"
    },
    "datasets": {
      "description": "dataset information for the model package",
      "properties": {
        "baselineSegmentedBy": {
          "description": "Names of categorical features by which the training baseline was segmented. This allows for deployment prediction requests to be segmented by those same features. Segmenting the training baseline by these features allows for users to perform segmented analysis of Data Drift and Accuracy, and to compare the same subset of training and scoring data based on the selected segment attribute and segment value.",
          "items": {
            "type": "string"
          },
          "type": "array"
        },
        "datasetName": {
          "description": "Name of dataset used to train the model",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCatalogId": {
          "description": "ID for holdout data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCatalogVersionId": {
          "description": "Version ID for holdout data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "holdoutDataCreatedAt": {
          "description": "Time when the holdout data item was created",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDataCreatorEmail": {
          "description": "Email of the user who created the holdout data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDataCreatorId": {
          "default": null,
          "description": "ID of the creator of the holdout data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDataCreatorName": {
          "description": "Name of the user who created the holdout data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "holdoutDatasetName": {
          "description": "Name of dataset used for model holdout",
          "type": [
            "string",
            "null"
          ]
        },
        "targetHistogramBaseline": {
          "description": "Values used to establish the training baseline",
          "enum": [
            "predictions",
            "actuals"
          ],
          "type": "string"
        },
        "trainingDataCatalogId": {
          "description": "ID for training data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCatalogVersionId": {
          "description": "Version ID for training data (returned from uploading a data set)",
          "type": [
            "string",
            "null"
          ]
        },
        "trainingDataCreatedAt": {
          "description": "Time when the training data item was created",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataCreatorEmail": {
          "description": "Email of the user who created the training data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataCreatorId": {
          "default": null,
          "description": "ID of the creator of the training data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataCreatorName": {
          "description": "Name of the user who created the training data item",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        },
        "trainingDataSize": {
          "description": "Number of rows in training data (used by DR models)",
          "type": "integer"
        }
      },
      "required": [
        "baselineSegmentedBy",
        "datasetName",
        "holdoutDataCatalogId",
        "holdoutDataCatalogVersionId",
        "holdoutDatasetName",
        "trainingDataCatalogId",
        "trainingDataCatalogVersionId"
      ],
      "type": "object"
    },
    "id": {
      "description": "ID of the Model package",
      "type": "string"
    },
    "importMeta": {
      "description": "Information from when this Model Package was first saved",
      "properties": {
        "containsFearPipeline": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with fear pipeline.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "containsFeaturelists": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with featurelists.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "containsLeaderboardMeta": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with leaderboard meta.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "containsProjectMeta": {
          "description": "Exists for imported models only, indicates thatmodel package contains file with project meta.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "creatorFullName": {
          "description": "Full name of the person who created this model package",
          "type": [
            "string",
            "null"
          ]
        },
        "creatorId": {
          "description": "User ID of the person who created this Model Package",
          "type": "string"
        },
        "creatorUsername": {
          "description": "Username of the person who created this model package",
          "type": "string"
        },
        "dateCreated": {
          "description": "When this Model Package was created",
          "type": "string"
        },
        "originalFileName": {
          "description": "Exists for imported models only, the original file name that was uploaded",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "creatorFullName",
        "creatorId",
        "creatorUsername",
        "dateCreated",
        "originalFileName"
      ],
      "type": "object"
    },
    "isArchived": {
      "description": "Whether the model package is permanently archived (cannot be used in deployment or replacement)",
      "type": "boolean"
    },
    "isDeprecated": {
      "description": "Whether the model package is deprecated. eg. python2 models are deprecated.",
      "type": "boolean",
      "x-versionadded": "v2.29"
    },
    "mlpkgFileContents": {
      "description": "Information about the content of .mlpkg artifact",
      "properties": {
        "allTimeSeriesPredictionIntervals": {
          "description": "Whether .mlpkg contains TS prediction intervals computed for all percentiles",
          "type": [
            "boolean",
            "null"
          ],
          "x-versionadded": "v2.31"
        }
      },
      "type": "object"
    },
    "modelDescription": {
      "description": "model description information for the model package",
      "properties": {
        "buildEnvironmentType": {
          "description": "build environment type of the model",
          "enum": [
            "DataRobot",
            "Python",
            "R",
            "Java",
            "Other"
          ],
          "type": "string"
        },
        "description": {
          "description": "a description of the model",
          "type": [
            "string",
            "null"
          ]
        },
        "location": {
          "description": "location of the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatedAt": {
          "description": "time when the model was created",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatorEmail": {
          "description": "email of the user who created the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatorId": {
          "default": null,
          "description": "ID of the creator of the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelCreatorName": {
          "description": "name of the user who created the model",
          "type": [
            "string",
            "null"
          ]
        },
        "modelName": {
          "description": "model name",
          "type": "string"
        }
      },
      "required": [
        "buildEnvironmentType",
        "description",
        "location"
      ],
      "type": "object"
    },
    "modelExecutionType": {
      "description": "Type of model package. `dedicated` (native DataRobot models) and `custom_inference_model` (user added inference models) both execute on DataRobot prediction servers, `external` do not",
      "enum": [
        "dedicated",
        "custom_inference_model",
        "external"
      ],
      "type": "string"
    },
    "modelId": {
      "description": "ID of the model",
      "type": "string"
    },
    "modelKind": {
      "description": "Model attribute information",
      "properties": {
        "isAnomalyDetectionModel": {
          "description": "true if this is an anomaly detection model",
          "type": "boolean"
        },
        "isCombinedModel": {
          "description": "true if model is a combined model",
          "type": "boolean",
          "x-versionadded": "v2.27"
        },
        "isFeatureDiscovery": {
          "description": "true if this model uses the Feature Discovery feature",
          "type": "boolean"
        },
        "isMultiseries": {
          "description": "true if model is multiseries",
          "type": "boolean"
        },
        "isTimeSeries": {
          "description": "true if model is time series",
          "type": "boolean"
        },
        "isUnsupervisedLearning": {
          "description": "true if model used unsupervised learning",
          "type": "boolean"
        }
      },
      "required": [
        "isAnomalyDetectionModel",
        "isCombinedModel",
        "isFeatureDiscovery",
        "isMultiseries",
        "isTimeSeries",
        "isUnsupervisedLearning"
      ],
      "type": "object"
    },
    "name": {
      "description": "Model package name",
      "type": "string"
    },
    "permissions": {
      "description": "List of action permissions the user making the request has on the model package",
      "items": {
        "type": "string"
      },
      "type": "array",
      "x-versionadded": "v2.20"
    },
    "sourceMeta": {
      "description": "Meta information from where this model was generated",
      "properties": {
        "customModelDetails": {
          "description": "Details of the custom model associated to this registered model version",
          "properties": {
            "createdAt": {
              "description": "Time when the custom model was created",
              "type": "string"
            },
            "creatorEmail": {
              "description": "Email of the user who created the custom model",
              "type": [
                "string",
                "null"
              ]
            },
            "creatorId": {
              "description": "ID of the creator of the custom model",
              "type": "string"
            },
            "creatorName": {
              "description": "Name of the user who created the custom model",
              "type": [
                "string",
                "null"
              ]
            },
            "id": {
              "description": "ID of the associated custom model",
              "type": "string"
            },
            "versionLabel": {
              "description": "Label of associated custom model version.",
              "type": [
                "string",
                "null"
              ],
              "x-versionadded": "v2.34"
            }
          },
          "required": [
            "createdAt",
            "creatorId",
            "id"
          ],
          "type": "object"
        },
        "environmentUrl": {
          "description": "If available, URL of the source model",
          "format": "uri",
          "type": [
            "string",
            "null"
          ]
        },
        "fips_140_2Enabled": {
          "description": "true if the model was built with FIPS-140-2",
          "type": "boolean"
        },
        "projectCreatedAt": {
          "description": "If available, time when the project was created",
          "type": [
            "string",
            "null"
          ]
        },
        "projectCreatorEmail": {
          "description": "If available, email of the user who created the project",
          "type": [
            "string",
            "null"
          ]
        },
        "projectCreatorId": {
          "default": null,
          "description": "If available, ID of the creator of the project",
          "type": [
            "string",
            "null"
          ]
        },
        "projectCreatorName": {
          "description": "If available, name of the user who created the project",
          "type": [
            "string",
            "null"
          ]
        },
        "projectId": {
          "description": "If available, the project id used for this model",
          "type": [
            "string",
            "null"
          ]
        },
        "projectName": {
          "description": "If available, the project name for this model",
          "type": [
            "string",
            "null"
          ]
        },
        "scoringCode": {
          "description": "If available, information about the model's scoring code",
          "properties": {
            "dataRobotPredictionVersion": {
              "description": "DataRobot prediction API version for the scoring code",
              "type": [
                "string",
                "null"
              ]
            },
            "location": {
              "description": "Location of the scoring code",
              "enum": [
                "local_leaderboard",
                "mlpkg"
              ],
              "type": [
                "string",
                "null"
              ]
            }
          },
          "required": [
            "dataRobotPredictionVersion",
            "location"
          ],
          "type": "object"
        },
        "useCaseDetails": {
          "description": "Details of the use-case associated to this registered model version",
          "properties": {
            "createdAt": {
              "description": "Time when use-case was created",
              "type": "string"
            },
            "creatorEmail": {
              "description": "Email of the user who created use-case",
              "type": [
                "string",
                "null"
              ]
            },
            "creatorId": {
              "description": "ID of the creator of the use-case",
              "type": "string"
            },
            "creatorName": {
              "description": "Name of the user who created use-case",
              "type": [
                "string",
                "null"
              ]
            },
            "id": {
              "description": "ID of the associated use-case",
              "type": "string"
            },
            "name": {
              "description": "Name of the use case at the moment of creation",
              "type": [
                "string",
                "null"
              ]
            }
          },
          "required": [
            "createdAt",
            "creatorId",
            "id"
          ],
          "type": "object"
        }
      },
      "required": [
        "environmentUrl",
        "projectId",
        "projectName",
        "scoringCode"
      ],
      "type": "object"
    },
    "target": {
      "description": "target information for the model package",
      "properties": {
        "classCount": {
          "description": "Number of classes for classification models.",
          "minimum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "classNames": {
          "description": "Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class. Limited to 100 returned for Multiclass.",
          "items": {
            "type": "string"
          },
          "maxItems": 100,
          "type": "array"
        },
        "name": {
          "description": "name of the target column",
          "type": "string"
        },
        "predictionProbabilitiesColumn": {
          "description": "Field or column name containing prediction probabilities",
          "type": [
            "string",
            "null"
          ]
        },
        "predictionThreshold": {
          "description": "Prediction threshold used for binary classification models",
          "maximum": 1,
          "minimum": 0,
          "type": [
            "number",
            "null"
          ]
        },
        "type": {
          "description": "Target type of the model.",
          "enum": [
            "Binary",
            "Regression",
            "Multiclass",
            "Multilabel",
            "TextGeneration",
            "GeoPoint",
            "AgenticWorkflow",
            "MCP"
          ],
          "type": "string"
        }
      },
      "required": [
        "classCount",
        "classNames",
        "name",
        "predictionProbabilitiesColumn",
        "predictionThreshold",
        "type"
      ],
      "type": "object"
    },
    "timeseries": {
      "description": "time series information for the model package",
      "properties": {
        "datetimeColumnFormat": {
          "description": "Date format for forecast date and forecast point column",
          "type": [
            "string",
            "null"
          ]
        },
        "datetimeColumnName": {
          "description": "Name of the forecast date column",
          "type": [
            "string",
            "null"
          ]
        },
        "effectiveFeatureDerivationWindowEnd": {
          "description": "Same concept as `featureDerivationWindowEnd` which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the \"real\" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.25"
        },
        "effectiveFeatureDerivationWindowStart": {
          "description": "Same concept as `featureDerivationWindowStart` which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the \"real\" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ],
          "x-versionadded": "v2.25"
        },
        "featureDerivationWindowEnd": {
          "description": "Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should end.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "featureDerivationWindowStart": {
          "description": "Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should begin.",
          "maximum": 0,
          "type": [
            "integer",
            "null"
          ]
        },
        "forecastDistanceColumnName": {
          "description": "Name of the forecast distance column",
          "type": [
            "string",
            "null"
          ]
        },
        "forecastDistances": {
          "description": "List of integer forecast distances",
          "items": {
            "type": "integer"
          },
          "type": "array"
        },
        "forecastDistancesTimeUnit": {
          "description": "The time unit of forecast distances",
          "enum": [
            "MICROSECOND",
            "MILLISECOND",
            "SECOND",
            "MINUTE",
            "HOUR",
            "DAY",
            "WEEK",
            "MONTH",
            "QUARTER",
            "YEAR"
          ],
          "type": [
            "string",
            "null"
          ]
        },
        "forecastPointColumnName": {
          "description": "Name of the forecast point column",
          "type": [
            "string",
            "null"
          ]
        },
        "isCrossSeries": {
          "description": "true if the model is cross-series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "isNewSeriesSupport": {
          "description": "true if the model is optimized to support new series.",
          "type": [
            "boolean",
            "null"
          ],
          "x-versionadded": "v2.25"
        },
        "isTraditionalTimeSeries": {
          "description": "true if the model is traditional time series.",
          "type": [
            "boolean",
            "null"
          ]
        },
        "seriesColumnName": {
          "description": "Name of the series column in case of multi-series date",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "datetimeColumnFormat",
        "datetimeColumnName",
        "effectiveFeatureDerivationWindowEnd",
        "effectiveFeatureDerivationWindowStart",
        "featureDerivationWindowEnd",
        "featureDerivationWindowStart",
        "forecastDistanceColumnName",
        "forecastDistances",
        "forecastDistancesTimeUnit",
        "forecastPointColumnName",
        "isCrossSeries",
        "isNewSeriesSupport",
        "isTraditionalTimeSeries",
        "seriesColumnName"
      ],
      "type": "object"
    },
    "updatedBy": {
      "description": "Information on the user who last modified the registered model",
      "properties": {
        "email": {
          "description": "Email of the user",
          "type": [
            "string",
            "null"
          ]
        },
        "id": {
          "description": "ID of the user",
          "type": "string"
        },
        "name": {
          "description": "Full name of the user",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "email",
        "id",
        "name"
      ],
      "type": "object"
    },
    "userProvidedId": {
      "description": "A user-provided unique ID associated with the given custom inference model.",
      "type": "string"
    }
  },
  "required": [
    "activeDeploymentCount",
    "capabilities",
    "datasets",
    "id",
    "importMeta",
    "isArchived",
    "isDeprecated",
    "modelDescription",
    "modelExecutionType",
    "modelId",
    "modelKind",
    "name",
    "permissions",
    "sourceMeta",
    "target",
    "timeseries",
    "updatedBy"
  ],
  "type": "object"
}

Properties

Name Type Required Restrictions Description
activeDeploymentCount integer true Number of deployments currently using this model package
buildStatus string,null false Model package build status
capabilities ModelPackageCapabilities true Capabilities of the current model package.
datasets ModelPackageDatasets true dataset information for the model package
id string true ID of the Model package
importMeta ModelPackageImportMeta true Information from when this Model Package was first saved
isArchived boolean true Whether the model package is permanently archived (cannot be used in deployment or replacement)
isDeprecated boolean true Whether the model package is deprecated. eg. python2 models are deprecated.
mlpkgFileContents MlpkgFileContents false Information about the content of .mlpkg artifact
modelDescription ModelPackageModelDescription true model description information for the model package
modelExecutionType string true Type of model package. dedicated (native DataRobot models) and custom_inference_model (user added inference models) both execute on DataRobot prediction servers, external do not
modelId string true ID of the model
modelKind ModelPackageModelKind true Model attribute information
name string true Model package name
permissions [string] true List of action permissions the user making the request has on the model package
sourceMeta ModelPackageSourceMeta true Meta information from where this model was generated
target ModelPackageTarget true target information for the model package
timeseries ModelPackageTimeseries true time series information for the model package
updatedBy UserMetadata true Information on the user who last modified the registered model
userProvidedId string false A user-provided unique ID associated with the given custom inference model.

Enumerated Values

Property Value
buildStatus [inProgress, complete, failed]
modelExecutionType [dedicated, custom_inference_model, external]

ModelPackageScoringCodeMeta

{
  "description": "If available, information about the model's scoring code",
  "properties": {
    "dataRobotPredictionVersion": {
      "description": "DataRobot prediction API version for the scoring code",
      "type": [
        "string",
        "null"
      ]
    },
    "location": {
      "description": "Location of the scoring code",
      "enum": [
        "local_leaderboard",
        "mlpkg"
      ],
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "dataRobotPredictionVersion",
    "location"
  ],
  "type": "object"
}

If available, information about the model's scoring code

Properties

Name Type Required Restrictions Description
dataRobotPredictionVersion string,null true DataRobot prediction API version for the scoring code
location string,null true Location of the scoring code

Enumerated Values

Property Value
location [local_leaderboard, mlpkg]

ModelPackageSourceMeta

{
  "description": "Meta information from where this model was generated",
  "properties": {
    "customModelDetails": {
      "description": "Details of the custom model associated to this registered model version",
      "properties": {
        "createdAt": {
          "description": "Time when the custom model was created",
          "type": "string"
        },
        "creatorEmail": {
          "description": "Email of the user who created the custom model",
          "type": [
            "string",
            "null"
          ]
        },
        "creatorId": {
          "description": "ID of the creator of the custom model",
          "type": "string"
        },
        "creatorName": {
          "description": "Name of the user who created the custom model",
          "type": [
            "string",
            "null"
          ]
        },
        "id": {
          "description": "ID of the associated custom model",
          "type": "string"
        },
        "versionLabel": {
          "description": "Label of associated custom model version.",
          "type": [
            "string",
            "null"
          ],
          "x-versionadded": "v2.34"
        }
      },
      "required": [
        "createdAt",
        "creatorId",
        "id"
      ],
      "type": "object"
    },
    "environmentUrl": {
      "description": "If available, URL of the source model",
      "format": "uri",
      "type": [
        "string",
        "null"
      ]
    },
    "fips_140_2Enabled": {
      "description": "true if the model was built with FIPS-140-2",
      "type": "boolean"
    },
    "projectCreatedAt": {
      "description": "If available, time when the project was created",
      "type": [
        "string",
        "null"
      ]
    },
    "projectCreatorEmail": {
      "description": "If available, email of the user who created the project",
      "type": [
        "string",
        "null"
      ]
    },
    "projectCreatorId": {
      "default": null,
      "description": "If available, ID of the creator of the project",
      "type": [
        "string",
        "null"
      ]
    },
    "projectCreatorName": {
      "description": "If available, name of the user who created the project",
      "type": [
        "string",
        "null"
      ]
    },
    "projectId": {
      "description": "If available, the project id used for this model",
      "type": [
        "string",
        "null"
      ]
    },
    "projectName": {
      "description": "If available, the project name for this model",
      "type": [
        "string",
        "null"
      ]
    },
    "scoringCode": {
      "description": "If available, information about the model's scoring code",
      "properties": {
        "dataRobotPredictionVersion": {
          "description": "DataRobot prediction API version for the scoring code",
          "type": [
            "string",
            "null"
          ]
        },
        "location": {
          "description": "Location of the scoring code",
          "enum": [
            "local_leaderboard",
            "mlpkg"
          ],
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "dataRobotPredictionVersion",
        "location"
      ],
      "type": "object"
    },
    "useCaseDetails": {
      "description": "Details of the use-case associated to this registered model version",
      "properties": {
        "createdAt": {
          "description": "Time when use-case was created",
          "type": "string"
        },
        "creatorEmail": {
          "description": "Email of the user who created use-case",
          "type": [
            "string",
            "null"
          ]
        },
        "creatorId": {
          "description": "ID of the creator of the use-case",
          "type": "string"
        },
        "creatorName": {
          "description": "Name of the user who created use-case",
          "type": [
            "string",
            "null"
          ]
        },
        "id": {
          "description": "ID of the associated use-case",
          "type": "string"
        },
        "name": {
          "description": "Name of the use case at the moment of creation",
          "type": [
            "string",
            "null"
          ]
        }
      },
      "required": [
        "createdAt",
        "creatorId",
        "id"
      ],
      "type": "object"
    }
  },
  "required": [
    "environmentUrl",
    "projectId",
    "projectName",
    "scoringCode"
  ],
  "type": "object"
}

Meta information from where this model was generated

Properties

Name Type Required Restrictions Description
customModelDetails CustomModelDetails false Details of the custom model associated to this registered model version
environmentUrl string,null(uri) true If available, URL of the source model
fips_140_2Enabled boolean false true if the model was built with FIPS-140-2
projectCreatedAt string,null false If available, time when the project was created
projectCreatorEmail string,null false If available, email of the user who created the project
projectCreatorId string,null false If available, ID of the creator of the project
projectCreatorName string,null false If available, name of the user who created the project
projectId string,null true If available, the project id used for this model
projectName string,null true If available, the project name for this model
scoringCode ModelPackageScoringCodeMeta true If available, information about the model's scoring code
useCaseDetails UseCaseDetails false Details of the use-case associated to this registered model version

ModelPackageTarget

{
  "description": "target information for the model package",
  "properties": {
    "classCount": {
      "description": "Number of classes for classification models.",
      "minimum": 0,
      "type": [
        "integer",
        "null"
      ]
    },
    "classNames": {
      "description": "Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class. Limited to 100 returned for Multiclass.",
      "items": {
        "type": "string"
      },
      "maxItems": 100,
      "type": "array"
    },
    "name": {
      "description": "name of the target column",
      "type": "string"
    },
    "predictionProbabilitiesColumn": {
      "description": "Field or column name containing prediction probabilities",
      "type": [
        "string",
        "null"
      ]
    },
    "predictionThreshold": {
      "description": "Prediction threshold used for binary classification models",
      "maximum": 1,
      "minimum": 0,
      "type": [
        "number",
        "null"
      ]
    },
    "type": {
      "description": "Target type of the model.",
      "enum": [
        "Binary",
        "Regression",
        "Multiclass",
        "Multilabel",
        "TextGeneration",
        "GeoPoint",
        "AgenticWorkflow",
        "MCP"
      ],
      "type": "string"
    }
  },
  "required": [
    "classCount",
    "classNames",
    "name",
    "predictionProbabilitiesColumn",
    "predictionThreshold",
    "type"
  ],
  "type": "object"
}

target information for the model package

Properties

Name Type Required Restrictions Description
classCount integer,null true minimum: 0
Number of classes for classification models.
classNames [string] true maxItems: 100
Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class. Limited to 100 returned for Multiclass.
name string true name of the target column
predictionProbabilitiesColumn string,null true Field or column name containing prediction probabilities
predictionThreshold number,null true maximum: 1
minimum: 0
Prediction threshold used for binary classification models
type string true Target type of the model.

Enumerated Values

Property Value
type [Binary, Regression, Multiclass, Multilabel, TextGeneration, GeoPoint, AgenticWorkflow, MCP]

ModelPackageTargetCreate

{
  "description": "The target information for the model package.",
  "properties": {
    "classNames": {
      "description": "Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class.",
      "items": {
        "maxLength": 128,
        "type": "string"
      },
      "maxItems": 1000,
      "type": "array"
    },
    "name": {
      "description": "name of the target column",
      "maxLength": 128,
      "type": "string"
    },
    "predictionProbabilitiesColumn": {
      "description": "Field or column name containing prediction probabilities",
      "maxLength": 128,
      "type": [
        "string",
        "null"
      ]
    },
    "predictionThreshold": {
      "description": "Prediction threshold used for binary classification models",
      "maximum": 1,
      "minimum": 0,
      "type": [
        "number",
        "null"
      ]
    },
    "type": {
      "description": "Target type of the model.",
      "enum": [
        "Binary",
        "Regression",
        "Multiclass",
        "Multilabel",
        "TextGeneration",
        "GeoPoint",
        "AgenticWorkflow",
        "MCP"
      ],
      "type": "string"
    }
  },
  "required": [
    "name",
    "type"
  ],
  "type": "object",
  "x-versionadded": "v2.37"
}

The target information for the model package.

Properties

Name Type Required Restrictions Description
classNames [string] false maxItems: 1000
Class names for prediction results. When target type is Binary, two class names are returned. The first element is the minority (positive) class and the second element is the majority (negative) class.
name string true maxLength: 128
name of the target column
predictionProbabilitiesColumn string,null false maxLength: 128
Field or column name containing prediction probabilities
predictionThreshold number,null false maximum: 1
minimum: 0
Prediction threshold used for binary classification models
type string true Target type of the model.

Enumerated Values

Property Value
type [Binary, Regression, Multiclass, Multilabel, TextGeneration, GeoPoint, AgenticWorkflow, MCP]

ModelPackageTextGeneration

{
  "description": "Text generation information for the model package",
  "properties": {
    "prompt": {
      "description": "Name of the prompt column",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "prompt"
  ],
  "type": "object",
  "x-versionadded": "v2.37"
}

Text generation information for the model package

Properties

Name Type Required Restrictions Description
prompt string,null true Name of the prompt column

ModelPackageTimeseries

{
  "description": "time series information for the model package",
  "properties": {
    "datetimeColumnFormat": {
      "description": "Date format for forecast date and forecast point column",
      "type": [
        "string",
        "null"
      ]
    },
    "datetimeColumnName": {
      "description": "Name of the forecast date column",
      "type": [
        "string",
        "null"
      ]
    },
    "effectiveFeatureDerivationWindowEnd": {
      "description": "Same concept as `featureDerivationWindowEnd` which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the \"real\" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ],
      "x-versionadded": "v2.25"
    },
    "effectiveFeatureDerivationWindowStart": {
      "description": "Same concept as `featureDerivationWindowStart` which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the \"real\" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ],
      "x-versionadded": "v2.25"
    },
    "featureDerivationWindowEnd": {
      "description": "Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should end.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ]
    },
    "featureDerivationWindowStart": {
      "description": "Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should begin.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ]
    },
    "forecastDistanceColumnName": {
      "description": "Name of the forecast distance column",
      "type": [
        "string",
        "null"
      ]
    },
    "forecastDistances": {
      "description": "List of integer forecast distances",
      "items": {
        "type": "integer"
      },
      "type": "array"
    },
    "forecastDistancesTimeUnit": {
      "description": "The time unit of forecast distances",
      "enum": [
        "MICROSECOND",
        "MILLISECOND",
        "SECOND",
        "MINUTE",
        "HOUR",
        "DAY",
        "WEEK",
        "MONTH",
        "QUARTER",
        "YEAR"
      ],
      "type": [
        "string",
        "null"
      ]
    },
    "forecastPointColumnName": {
      "description": "Name of the forecast point column",
      "type": [
        "string",
        "null"
      ]
    },
    "isCrossSeries": {
      "description": "true if the model is cross-series.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "isNewSeriesSupport": {
      "description": "true if the model is optimized to support new series.",
      "type": [
        "boolean",
        "null"
      ],
      "x-versionadded": "v2.25"
    },
    "isTraditionalTimeSeries": {
      "description": "true if the model is traditional time series.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "seriesColumnName": {
      "description": "Name of the series column in case of multi-series date",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "datetimeColumnFormat",
    "datetimeColumnName",
    "effectiveFeatureDerivationWindowEnd",
    "effectiveFeatureDerivationWindowStart",
    "featureDerivationWindowEnd",
    "featureDerivationWindowStart",
    "forecastDistanceColumnName",
    "forecastDistances",
    "forecastDistancesTimeUnit",
    "forecastPointColumnName",
    "isCrossSeries",
    "isNewSeriesSupport",
    "isTraditionalTimeSeries",
    "seriesColumnName"
  ],
  "type": "object"
}

time series information for the model package

Properties

Name Type Required Restrictions Description
datetimeColumnFormat string,null true Date format for forecast date and forecast point column
datetimeColumnName string,null true Name of the forecast date column
effectiveFeatureDerivationWindowEnd integer,null true maximum: 0
Same concept as featureDerivationWindowEnd which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the "real" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.
effectiveFeatureDerivationWindowStart integer,null true maximum: 0
Same concept as featureDerivationWindowStart which is chosen by the user and based on the initial sampled data from the eda sample. When the dataset goes through aim, the pipeline reads the full dataset and figures out the "real" FDW (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.
featureDerivationWindowEnd integer,null true maximum: 0
Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should end.
featureDerivationWindowStart integer,null true maximum: 0
Negative number or zero defining how many time units of the forecast distances time unit into the past relative to the forecast point the feature derivation window should begin.
forecastDistanceColumnName string,null true Name of the forecast distance column
forecastDistances [integer] true List of integer forecast distances
forecastDistancesTimeUnit string,null true The time unit of forecast distances
forecastPointColumnName string,null true Name of the forecast point column
isCrossSeries boolean,null true true if the model is cross-series.
isNewSeriesSupport boolean,null true true if the model is optimized to support new series.
isTraditionalTimeSeries boolean,null true true if the model is traditional time series.
seriesColumnName string,null true Name of the series column in case of multi-series date

Enumerated Values

Property Value
forecastDistancesTimeUnit [MICROSECOND, MILLISECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, YEAR]

ModelPackageTimeseriesCreate

{
  "description": "Time series information for the model package.",
  "properties": {
    "datetimeColumnFormat": {
      "description": "The date format for the forecast date and forecast point column.",
      "type": [
        "string",
        "null"
      ]
    },
    "datetimeColumnName": {
      "description": "The name of the forecast date column.",
      "type": [
        "string",
        "null"
      ]
    },
    "effectiveFeatureDerivationWindowEnd": {
      "description": "A negative number or zero describing the end of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the \"real\" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ],
      "x-versionadded": "v2.37"
    },
    "effectiveFeatureDerivationWindowStart": {
      "description": "A negative number or zero describing the start of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the \"real\" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ],
      "x-versionadded": "v2.37"
    },
    "featureDerivationWindowEnd": {
      "description": "A negative number or zero defining the end point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -7 days would mean the feature derivation would be done with data ending at 7 days ago.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ]
    },
    "featureDerivationWindowStart": {
      "description": "A negative number or zero defining the start point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -28 days would means the feature derivation would be done with data starting from 28 days ago.",
      "maximum": 0,
      "type": [
        "integer",
        "null"
      ]
    },
    "forecastDistanceColumnName": {
      "description": "The name of the forecast distance column.",
      "type": [
        "string",
        "null"
      ]
    },
    "forecastDistances": {
      "description": "A list of integer forecast distances.",
      "items": {
        "type": "integer"
      },
      "type": "array"
    },
    "forecastDistancesTimeUnit": {
      "description": "The time unit of forecast distances.",
      "enum": [
        "MICROSECOND",
        "MILLISECOND",
        "SECOND",
        "MINUTE",
        "HOUR",
        "DAY",
        "WEEK",
        "MONTH",
        "QUARTER",
        "YEAR"
      ],
      "type": "string"
    },
    "forecastPointColumnName": {
      "description": "The name of the forecast point column.",
      "type": [
        "string",
        "null"
      ]
    },
    "isCrossSeries": {
      "description": "true if the model is cross-series.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "isNewSeriesSupport": {
      "default": false,
      "description": "true if the model is optimized to support new series.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "isTraditionalTimeSeries": {
      "default": false,
      "description": "Determines if the model is a traditional time series model.",
      "type": [
        "boolean",
        "null"
      ]
    },
    "seriesColumnName": {
      "description": "The name of the series column in the case of a multi-series date.",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "datetimeColumnFormat",
    "datetimeColumnName",
    "forecastDistanceColumnName",
    "forecastDistancesTimeUnit",
    "forecastPointColumnName"
  ],
  "type": "object",
  "x-versionadded": "v2.37"
}

Time series information for the model package.

Properties

Name Type Required Restrictions Description
datetimeColumnFormat string,null true The date format for the forecast date and forecast point column.
datetimeColumnName string,null true The name of the forecast date column.
effectiveFeatureDerivationWindowEnd integer,null false maximum: 0
A negative number or zero describing the end of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the "real" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.
effectiveFeatureDerivationWindowStart integer,null false maximum: 0
A negative number or zero describing the start of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. When the dataset goes through aim, the pipeline reads the full dataset and calculates the "real" window (i.e., the effective FDW). For most models, eFDW is approximately the same as the FDW.
featureDerivationWindowEnd integer,null false maximum: 0
A negative number or zero defining the end point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -7 days would mean the feature derivation would be done with data ending at 7 days ago.
featureDerivationWindowStart integer,null false maximum: 0
A negative number or zero defining the start point of the rolling window used to derive new features for the modeling dataset. This is relative to the forecast point, and the units are the forecast distances time units. For example, -28 days would means the feature derivation would be done with data starting from 28 days ago.
forecastDistanceColumnName string,null true The name of the forecast distance column.
forecastDistances [integer] false A list of integer forecast distances.
forecastDistancesTimeUnit string true The time unit of forecast distances.
forecastPointColumnName string,null true The name of the forecast point column.
isCrossSeries boolean,null false true if the model is cross-series.
isNewSeriesSupport boolean,null false true if the model is optimized to support new series.
isTraditionalTimeSeries boolean,null false Determines if the model is a traditional time series model.
seriesColumnName string,null false The name of the series column in the case of a multi-series date.

Enumerated Values

Property Value
forecastDistancesTimeUnit [MICROSECOND, MILLISECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, YEAR]

PersistentLogsForModelWithCustomTasksRetrieveResponse

{
  "properties": {
    "data": {
      "description": "An archive (tar.gz) of the logs produced and persisted by a model.",
      "format": "binary",
      "type": "string"
    }
  },
  "required": [
    "data"
  ],
  "type": "object"
}

Properties

Name Type Required Restrictions Description
data string(binary) true An archive (tar.gz) of the logs produced and persisted by a model.

UseCaseDetails

{
  "description": "Details of the use-case associated to this registered model version",
  "properties": {
    "createdAt": {
      "description": "Time when use-case was created",
      "type": "string"
    },
    "creatorEmail": {
      "description": "Email of the user who created use-case",
      "type": [
        "string",
        "null"
      ]
    },
    "creatorId": {
      "description": "ID of the creator of the use-case",
      "type": "string"
    },
    "creatorName": {
      "description": "Name of the user who created use-case",
      "type": [
        "string",
        "null"
      ]
    },
    "id": {
      "description": "ID of the associated use-case",
      "type": "string"
    },
    "name": {
      "description": "Name of the use case at the moment of creation",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "createdAt",
    "creatorId",
    "id"
  ],
  "type": "object"
}

Details of the use-case associated to this registered model version

Properties

Name Type Required Restrictions Description
createdAt string true Time when use-case was created
creatorEmail string,null false Email of the user who created use-case
creatorId string true ID of the creator of the use-case
creatorName string,null false Name of the user who created use-case
id string true ID of the associated use-case
name string,null false Name of the use case at the moment of creation

UserMetadata

{
  "description": "Information on the user who last modified the registered model",
  "properties": {
    "email": {
      "description": "Email of the user",
      "type": [
        "string",
        "null"
      ]
    },
    "id": {
      "description": "ID of the user",
      "type": "string"
    },
    "name": {
      "description": "Full name of the user",
      "type": [
        "string",
        "null"
      ]
    }
  },
  "required": [
    "email",
    "id",
    "name"
  ],
  "type": "object"
}

Information on the user who last modified the registered model

Properties

Name Type Required Restrictions Description
email string,null true Email of the user
id string true ID of the user
name string,null true Full name of the user