Models¶
This page outlines the operations, endpoints, parameters, and example requests and responses for the Models.
GET /api/v2/customInferenceImages/{imageId}/featureImpact/¶
Retrieve feature impact scores for features in a custom inference model image.
.. minversion:: v2.23 DEPRECATED: please use version route instead: GET /api/v2/customModels/{customModelId}/versions/{customModelVersionId}/featureImpact/
This route is a counterpart of a corresponding endpoint for native models: GET /api/v2/projects/{projectId}/models/{modelId}/featureImpact/
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/customInferenceImages/{imageId}/featureImpact/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
imageId | path | string | true | ID of the image of the custom inference model to retrieve feature impact from. |
Example responses¶
200 Response
{
"count": 0,
"featureImpacts": [
{
"featureName": "string",
"impactNormalized": 1,
"impactUnnormalized": 0,
"parentFeatureName": "string",
"redundantWith": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"ranRedundancyDetection": true,
"rowCount": 0,
"shapBased": true
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Custom model feature impact returned. | FeatureImpactResponse |
404 | Not Found | No feature impact data found for custom model. | None |
422 | Unprocessable Entity | Cannot retrieve feature impact scores: (1) if custom model is not an inference model, (2) if training data is not assigned, (3) if feature impact job is in progress for custom model. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/customInferenceImages/{imageId}/featureImpact/¶
Add a request to calculate feature impact for a custom inference model image to the queue.
.. minversion:: v2.23 DEPRECATED: please use version route instead: POST /api/v2/customModels/{customModelId}/versions/{customModelVersionId}/featureImpact/
This route is a counterpart of a corresponding endpoint for native models: POST /api/v2/projects/{projectId}/models/{modelId}/featureImpact/
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/customInferenceImages/{imageId}/featureImpact/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"rowCount": 10
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
imageId | path | string | true | ID of the image of the custom inference model to submit feature impact job for. |
body | body | FeatureImpactCreatePayload | false | none |
Example responses¶
202 Response
{
"statusId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Feature impact request has been successfully submitted. | FeatureImpactCreateResponse |
404 | Not Found | If feature impact has already been submitted. The response will include jobId property which can be used for tracking its progress. |
None |
422 | Unprocessable Entity | If job cannot be submitted because of invalid input or model state: (1) if image id does not correspond to a custom inference model, (2) if training data is not yet assigned or assignment is in progress, (3) if the rowCount exceeds the minimum or maximum value for this model's training data. |
None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | Contains a url for tracking job status: GET /api/v2/status/{statusId}/. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
DELETE /api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuild/¶
Cancel the custom model version's dependency build.
Code samples¶
# You can also use wget
curl -X DELETE https://app.datarobot.com/api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuild/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
customModelId | path | string | true | ID of the custom model. |
customModelVersionId | path | string | true | ID of the custom model version. |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | Custom model version's dependency build was cancelled. | None |
409 | Conflict | Custom model dependency build has reached a terminal state and cannot be cancelled. | None |
422 | Unprocessable Entity | No custom model dependency build started for specified version or dependency image is in use and cannot be deleted | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuild/¶
Retrieve the custom model version's dependency build status.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuild/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
customModelId | path | string | true | ID of the custom model. |
customModelVersionId | path | string | true | ID of the custom model version. |
Example responses¶
200 Response
{
"buildEnd": "string",
"buildLogLocation": "http://example.com",
"buildStart": "string",
"buildStatus": "submitted"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The metadata from the custom model version's dependency build. | BaseDependencyBuildMetadataResponse |
422 | Unprocessable Entity | Custom model dependency build has not started. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuild/¶
Start a custom model version's dependency build. This is required to test, deploy, or train custom models.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuild/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
customModelId | path | string | true | ID of the custom model. |
customModelVersionId | path | string | true | ID of the custom model version. |
Example responses¶
202 Response
{
"buildEnd": "string",
"buildLogLocation": "http://example.com",
"buildStart": "string",
"buildStatus": "submitted"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Custom model version's dependency build has started. | BaseDependencyBuildMetadataResponse |
422 | Unprocessable Entity | Custom model dependency build has failed. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuildLog/¶
Retrieve the custom model version's dependency build log.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/customModels/{customModelId}/versions/{customModelVersionId}/dependencyBuildLog/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
customModelId | path | string | true | ID of the custom model. |
customModelVersionId | path | string | true | ID of the custom model version. |
Example responses¶
200 Response
{
"data": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The log file generated during the custom model version's dependency build. | DependencyBuildLogResponse |
404 | Not Found | Dependency build is in progress or could not be found. | None |
422 | Unprocessable Entity | Custom model dependency build has not started. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/customTrainingBlueprints/¶
List custom training blueprints.
This route retrieves the metadata for all custom training blueprints a user has access to.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/customTrainingBlueprints/?offset=0&limit=1000 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | true | This many results will be skipped. |
limit | query | integer | true | At most this many results are returned. |
customModelId | query | string | false | List blueprints for a specific model. Default: all. |
reverse | query | string | false | List blueprints in reverse order. |
targetTypes | query | array[string] | false | Custom model target types to return. |
Enumerated Values¶
Parameter | Value |
---|---|
reverse | [false , False , true , True ] |
targetTypes | [Binary , Regression , Multiclass , Anomaly , Transform , TextGeneration , Unstructured , VectorDatabase ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"createdAt": "string",
"customModel": {
"id": "string",
"name": "string"
},
"customModelVersion": {
"id": "string",
"label": "string"
},
"executionEnvironment": {
"id": "string",
"name": "string"
},
"executionEnvironmentVersion": {
"id": "string",
"label": "string"
},
"targetType": "Binary",
"trainingHistory": [
{
"creationDate": "string",
"lid": "string",
"pid": "string",
"projectModelsCount": 0,
"projectName": "string",
"targetName": "string"
}
],
"userBlueprintId": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Custom training blueprint list returned. | CustomTrainingBlueprintListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/customTrainingBlueprints/¶
This route creates a blueprint from a custom training estimator with an environment so that it can be trained via blueprint ID.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/customTrainingBlueprints/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"customModelVersionId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | CustomTrainingBlueprintCreate | false | none |
Example responses¶
201 Response
{
"createdAt": "string",
"customModel": {
"id": "string",
"name": "string"
},
"customModelVersion": {
"id": "string",
"label": "string"
},
"executionEnvironment": {
"id": "string",
"name": "string"
},
"executionEnvironmentVersion": {
"id": "string",
"label": "string"
},
"targetType": "Binary",
"trainingHistory": [
{
"creationDate": "string",
"lid": "string",
"pid": "string",
"projectModelsCount": 0,
"projectName": "string",
"targetName": "string"
}
],
"userBlueprintId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
201 | Created | Blueprint successfully created. | CustomTrainingBlueprintResponse |
404 | Not Found | Any of the entities in the request cannot be retrieved. | None |
422 | Unprocessable Entity | Input parameters are invalid: either the custom model is for inference or no environment version ID was specified and the given environment has no versions. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/executionEnvironments/{environmentId}/accessControl/¶
Get a list of users who have access to this execution environment and their roles.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/executionEnvironments/{environmentId}/accessControl/?offset=0&limit=0 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | true | This many results will be skipped |
limit | query | integer | true | At most this many results are returned |
username | query | string | false | Optional, only return the access control information for a user with this username. |
userId | query | string | false | Optional, only return the access control information for a user with this user ID. |
environmentId | path | string | true | The ID of the environment. |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"canShare": true,
"role": "string",
"userId": "string",
"username": "string"
}
],
"next": "string",
"previous": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | SharingListResponse |
400 | Bad Request | Bad Request. Both username and userId were specified | None |
403 | Forbidden | Forbidden. The user does not have permissions to view the execution environment access list. | None |
404 | Not Found | Execution environment not found. Either the execution environment does not exist or user does not have permission to view it. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/executionEnvironments/{environmentId}/accessControl/¶
Grant access or update roles for users on this execution environment. Up to 100 user roles may be set in a single request.
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/executionEnvironments/{environmentId}/accessControl/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"data": [
{
"canShare": true,
"role": "ADMIN",
"username": "string"
}
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
environmentId | path | string | true | The ID of the environment. |
body | body | SharingUpdateOrRemoveWithGrant | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | None |
204 | No Content | Roles updated successfully. | None |
403 | Forbidden | User can view execution environment but does not have permission to grant these roles on the execution environment. | None |
404 | Not Found | Either the execution environment does not exist or the user does not have permissions to view the execution environment. | None |
409 | Conflict | The request would leave the execution environment without an owner. | None |
422 | Unprocessable Entity | One of the users in the request does not exist, or the request is otherwise invalid. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/modelPackages/¶
Retrieve the list of model packages a user has access to.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/modelPackages/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | This many results will be skipped. |
limit | query | integer | false | At most this many results are returned. |
modelId | query | string | false | If specified, limit results to model packages for the model with the specified ID. |
similarTo | query | string | false | Return model packages similar to a given model package ID. If used, will only return model packages that match target.name , target.type , target.classNames (for classification models), modelKind.isTimeSeries , and modelKind.isMultiseries of the specified model package. |
forChallenger | query | boolean | false | Can be used with similarTo to request similar model packages with the intent to use them as challenger models; for external model packages, instead of returning similar external model packages, similar DataRobot and Custom model packages will be retrieved. |
search | query | string | false | Provide a term to search for in package name, model name, or description |
predictionThreshold | query | number | false | Prediction threshold used for binary classification models |
imported | query | boolean | false | If specified, filter for either imported (true) or non-imported (false) model packages |
predictionEnvironmentId | query | string | false | Can be used to filter packages by what is supported by the prediction environment |
modelKind | query | any | false | Return models from the registry that match a specific format. |
buildStatus | query | string | false | If specified, filter model packages by the build status. |
Enumerated Values¶
Parameter | Value |
---|---|
buildStatus | [inProgress , complete , failed ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"activeDeploymentCount": 0,
"buildStatus": "inProgress",
"capabilities": {
"supportsAutomaticActuals": true,
"supportsChallengerModels": true,
"supportsFeatureDriftTracking": true,
"supportsHumilityRecommendedRules": true,
"supportsHumilityRules": true,
"supportsHumilityRulesDefaultCalculations": true,
"supportsPredictionWarning": true,
"supportsRetraining": true,
"supportsScoringCodeDownload": true,
"supportsSecondaryDatasets": true,
"supportsSegmentedAnalysisDriftAndAccuracy": true,
"supportsShapBasedPredictionExplanations": true,
"supportsTargetDriftTracking": true
},
"datasets": {
"baselineSegmentedBy": [
"string"
],
"datasetName": "string",
"holdoutDataCatalogId": "string",
"holdoutDataCatalogVersionId": "string",
"holdoutDataCreatedAt": "string",
"holdoutDataCreatorEmail": "string",
"holdoutDataCreatorId": null,
"holdoutDataCreatorName": "string",
"holdoutDatasetName": "string",
"targetHistogramBaseline": "predictions",
"trainingDataCatalogId": "string",
"trainingDataCatalogVersionId": "string",
"trainingDataCreatedAt": "string",
"trainingDataCreatorEmail": "string",
"trainingDataCreatorId": null,
"trainingDataCreatorName": "string",
"trainingDataSize": 0
},
"id": "string",
"importMeta": {
"containsFearPipeline": true,
"containsFeaturelists": true,
"containsLeaderboardMeta": true,
"containsProjectMeta": true,
"creatorFullName": "string",
"creatorId": "string",
"creatorUsername": "string",
"dateCreated": "string",
"originalFileName": "string"
},
"isArchived": true,
"isDeprecated": true,
"mlpkgFileContents": {
"allTimeSeriesPredictionIntervals": true
},
"modelDescription": {
"buildEnvironmentType": "DataRobot",
"description": "string",
"location": "string",
"modelCreatedAt": "string",
"modelCreatorEmail": "string",
"modelCreatorId": null,
"modelCreatorName": "string",
"modelName": "string"
},
"modelExecutionType": "dedicated",
"modelId": "string",
"modelKind": {
"isAnomalyDetectionModel": true,
"isCombinedModel": true,
"isFeatureDiscovery": true,
"isMultiseries": true,
"isTimeSeries": true,
"isUnsupervisedLearning": true
},
"name": "string",
"permissions": [
"string"
],
"sourceMeta": {
"customModelDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"versionLabel": "string"
},
"environmentUrl": "http://example.com",
"fips_140_2Enabled": true,
"projectCreatedAt": "string",
"projectCreatorEmail": "string",
"projectCreatorId": null,
"projectCreatorName": "string",
"projectId": "string",
"projectName": "string",
"scoringCode": {
"dataRobotPredictionVersion": "string",
"location": "local_leaderboard"
},
"useCaseDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"name": "string"
}
},
"target": {
"classCount": 0,
"classNames": [
"string"
],
"name": "string",
"predictionProbabilitiesColumn": "string",
"predictionThreshold": 1,
"type": "Binary"
},
"timeseries": {
"datetimeColumnFormat": "string",
"datetimeColumnName": "string",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featureDerivationWindowEnd": 0,
"featureDerivationWindowStart": 0,
"forecastDistanceColumnName": "string",
"forecastDistances": [
0
],
"forecastDistancesTimeUnit": "MICROSECOND",
"forecastPointColumnName": "string",
"isCrossSeries": true,
"isNewSeriesSupport": true,
"isTraditionalTimeSeries": true,
"seriesColumnName": "string"
},
"updatedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"userProvidedId": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | ModelPackageListResponse |
400 | Bad Request | Request invalid, refer to messages for detail. | None |
403 | Forbidden | Either MMM Model Packages or New Model Registry are not enabled. | None |
404 | Not Found | User permissions problem. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/modelPackages/fromLeaderboard/¶
Create model package from a Leaderboard model.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/modelPackages/fromLeaderboard/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"computeAllTsIntervals": null,
"description": "",
"distributionPredictionModelId": null,
"modelId": "string",
"name": null,
"predictionThreshold": 1
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | ModelPackageCreateFromLeaderboard | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | A job for building model package file was successfully submitted. | None |
422 | Unprocessable Entity | Unable to process the Model Package creation request. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/modelPackages/fromLearningModel/¶
Create model package from DataRobot model.
.. minversion:: v2.31 DEPRECATED: please use the following route instead: POST /api/v2/modelPackages/fromLeaderboard/
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/modelPackages/fromLearningModel/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"description": "string",
"distributionPredictionModelId": null,
"modelId": "string",
"name": null,
"predictionThreshold": 1
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | ModelPackageCreateFromLearningModel | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
201 | Created | none | None |
403 | Forbidden | The user does not have permission to create a Model Package. | None |
404 | Not Found | Either the model_id not exist or the user does not have permission to view the model and project. | None |
422 | Unprocessable Entity | Unable to process the Model Package creation request. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/modelPackages/{modelPackageId}/¶
Retrieve info about a model package.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/modelPackages/{modelPackageId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
modelPackageId | path | string | true | ID of the model package. |
Example responses¶
200 Response
{
"activeDeploymentCount": 0,
"buildStatus": "inProgress",
"capabilities": {
"supportsAutomaticActuals": true,
"supportsChallengerModels": true,
"supportsFeatureDriftTracking": true,
"supportsHumilityRecommendedRules": true,
"supportsHumilityRules": true,
"supportsHumilityRulesDefaultCalculations": true,
"supportsPredictionWarning": true,
"supportsRetraining": true,
"supportsScoringCodeDownload": true,
"supportsSecondaryDatasets": true,
"supportsSegmentedAnalysisDriftAndAccuracy": true,
"supportsShapBasedPredictionExplanations": true,
"supportsTargetDriftTracking": true
},
"datasets": {
"baselineSegmentedBy": [
"string"
],
"datasetName": "string",
"holdoutDataCatalogId": "string",
"holdoutDataCatalogVersionId": "string",
"holdoutDataCreatedAt": "string",
"holdoutDataCreatorEmail": "string",
"holdoutDataCreatorId": null,
"holdoutDataCreatorName": "string",
"holdoutDatasetName": "string",
"targetHistogramBaseline": "predictions",
"trainingDataCatalogId": "string",
"trainingDataCatalogVersionId": "string",
"trainingDataCreatedAt": "string",
"trainingDataCreatorEmail": "string",
"trainingDataCreatorId": null,
"trainingDataCreatorName": "string",
"trainingDataSize": 0
},
"id": "string",
"importMeta": {
"containsFearPipeline": true,
"containsFeaturelists": true,
"containsLeaderboardMeta": true,
"containsProjectMeta": true,
"creatorFullName": "string",
"creatorId": "string",
"creatorUsername": "string",
"dateCreated": "string",
"originalFileName": "string"
},
"isArchived": true,
"isDeprecated": true,
"mlpkgFileContents": {
"allTimeSeriesPredictionIntervals": true
},
"modelDescription": {
"buildEnvironmentType": "DataRobot",
"description": "string",
"location": "string",
"modelCreatedAt": "string",
"modelCreatorEmail": "string",
"modelCreatorId": null,
"modelCreatorName": "string",
"modelName": "string"
},
"modelExecutionType": "dedicated",
"modelId": "string",
"modelKind": {
"isAnomalyDetectionModel": true,
"isCombinedModel": true,
"isFeatureDiscovery": true,
"isMultiseries": true,
"isTimeSeries": true,
"isUnsupervisedLearning": true
},
"name": "string",
"permissions": [
"string"
],
"sourceMeta": {
"customModelDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"versionLabel": "string"
},
"environmentUrl": "http://example.com",
"fips_140_2Enabled": true,
"projectCreatedAt": "string",
"projectCreatorEmail": "string",
"projectCreatorId": null,
"projectCreatorName": "string",
"projectId": "string",
"projectName": "string",
"scoringCode": {
"dataRobotPredictionVersion": "string",
"location": "local_leaderboard"
},
"useCaseDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"name": "string"
}
},
"target": {
"classCount": 0,
"classNames": [
"string"
],
"name": "string",
"predictionProbabilitiesColumn": "string",
"predictionThreshold": 1,
"type": "Binary"
},
"timeseries": {
"datetimeColumnFormat": "string",
"datetimeColumnName": "string",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featureDerivationWindowEnd": 0,
"featureDerivationWindowStart": 0,
"forecastDistanceColumnName": "string",
"forecastDistances": [
0
],
"forecastDistancesTimeUnit": "MICROSECOND",
"forecastPointColumnName": "string",
"isCrossSeries": true,
"isNewSeriesSupport": true,
"isTraditionalTimeSeries": true,
"seriesColumnName": "string"
},
"updatedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"userProvidedId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | ModelPackageRetrieveResponse |
404 | Not Found | Either the model package does not exist or the user does not have permission to view the model package. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/modelPackages/{modelPackageId}/archive/¶
(Deprecated in v2.32) Permanently archive a model package. It will no longer be able to be used in new deployments or replacement. It will not be accessible in the model package list api. It will only be accessible at the model package retrieve route for this model package.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/modelPackages/{modelPackageId}/archive/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
modelPackageId | path | string | true | ID of the model package. |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | none | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/modelPackages/{modelPackageId}/capabilities/¶
Retrieve the capabilities for the model package.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/modelPackages/{modelPackageId}/capabilities/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
modelPackageId | path | string | true | ID of the model package. |
Example responses¶
200 Response
{
"data": [
{
"messages": [
"string"
],
"name": "string",
"supported": true
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | ModelPackageCapabilitiesRetrieveResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/modelPackages/{modelPackageId}/features/¶
Retrieve the feature list for given model package.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/modelPackages/{modelPackageId}/features/?offset=0&limit=50 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | true | The number of features to skip, defaults to 0. |
limit | query | integer | true | The number of features to return, defaults to 0. |
includeNonPredictionFeatures | query | string | false | When True will return all raw features in the universe dataset associated with the deployment, and when False will return only those raw features used to make predictions on the deployment. |
forSegmentedAnalysis | query | string | false | When True, features returned will be filtered to those usable for segmented analysis. |
search | query | string | false | Case insensitive search against names of the deployment's features. |
orderBy | query | string | false | The sort order to apply to the list of features. Prefix the attribute name with a dash to sort in descending order, e.g., "-name". |
modelPackageId | path | string | true | ID of the model package. |
Enumerated Values¶
Parameter | Value |
---|---|
includeNonPredictionFeatures | [false , False , true , True ] |
forSegmentedAnalysis | [false , False , true , True ] |
orderBy | [name , importance , -name , -importance ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"dateFormat": "string",
"featureType": "string",
"importance": 0,
"knownInAdvance": true,
"name": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Model package feature list. | FeatureListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/modelPackages/{modelPackageId}/sharedRoles/¶
(Deprecated in v2.32) instead.Get a list of users, groups and organizations who have access to this model package and their roles on the model package.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/modelPackages/{modelPackageId}/sharedRoles/?offset=0&limit=10 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
id | query | string | false | Only return roles for a user, group or organization with this identifier. |
offset | query | integer | true | This many results will be skipped |
limit | query | integer | true | At most this many results are returned |
name | query | string | false | Only return roles for a user, group or organization with this name. |
shareRecipientType | query | string | false | List access controls for recipients with this type. |
modelPackageId | path | string | true | ID of the model package. |
Enumerated Values¶
Parameter | Value |
---|---|
shareRecipientType | [user , group , organization ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"id": "string",
"name": "string",
"role": "ADMIN",
"shareRecipientType": "user"
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The model package's access control list. | SharingListV2Response |
404 | Not Found | Either the Model Package does not exist or the user does not have permissions to view the Model Package. | None |
422 | Unprocessable Entity | Both username and userId were specified | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/biasMitigatedModels/¶
List of bias mitigated models for the selected project.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/biasMitigatedModels/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | This many results will be skipped. |
limit | query | integer | false | At most this many results are returned. |
parentModelId | query | string | false | Retrieve a list of mitigated models for the parent model if specified. Otherwise retrieve a list of all mitigated models for the project. |
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"biasMitigationTechnique": "preprocessingReweighing",
"includeBiasMitigationFeatureAsPredictorVariable": true,
"modelId": "string",
"parentModelId": "string",
"protectedFeature": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Returns Bias Mitigated models results. | BiasMitigatedModelsListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/biasMitigatedModels/¶
Add a request to the queue to train a model with bias mitigation applied.
If the job has been previously submitted, the request will return the jobId
of the previously submitted job. Use this jobId
to check status of the previously submitted job.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/biasMitigatedModels/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"biasMitigationFeature": "string",
"biasMitigationParentLid": "string",
"biasMitigationTechnique": "preprocessingReweighing",
"includeBiasMitigationFeatureAsPredictorVariable": true
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | BiasMitigationModelCreate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | The model training request has been successfully submitted. See Location header. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/biasMitigationFeatureInfo/¶
Get bias mitigation data quality information for a given projectId and featureName.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/biasMitigationFeatureInfo/?featureName=string \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
featureName | query | string | true | Name of feature for mitigation info. |
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"messages": [
{
"additionalInfo": [
"string"
],
"messageLevel": "CRITICAL",
"messageText": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Dictionary with one entry ("messages") with list of data quality information about a feature. | MessagesInfo |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/biasMitigationFeatureInfo/{featureName}/¶
Submit a job to create bias mitigation data quality information for a given projectId and featureName.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/biasMitigationFeatureInfo/{featureName}/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
featureName | path | string | true | Name of feature for mitigation info. |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | A URI of the newly submitted job in the "Location" header. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/blenderModels/¶
List all blenders in a project.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/blenderModels/?offset=0&limit=0 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | true | This many results will be skipped. |
limit | query | integer | true | At most this many results are returned. If 0, all results. |
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"blenderMethod": "string",
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelIds": [
"string"
],
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | A list of all of the blenders in a project. | BlenderListResponse |
404 | Not Found | This resource does not exist. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/blenderModels/¶
Create a blender from other models using a specified blender method. Note: Time Series projects only allow the following blender methods: "AVG", "MED", "FORECAST_DISTANCE_ENET", and "FORECAST_DISTANCE_AVG".
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/blenderModels/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"blenderMethod": "PLS",
"modelIds": [
"string"
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | BlenderCreate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Model job successfully added to queue. See the Location header. | None |
404 | Not Found | This resource does not exist. | None |
422 | Unprocessable Entity | Unable to create a blender or request is not supported in this context. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | A url that can be polled to check the status of the job. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/blenderModels/blendCheck/¶
Check if models can be blended.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/blenderModels/blendCheck/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"blenderMethod": "PLS",
"modelIds": [
"string"
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | BlenderCreate | false | none |
Example responses¶
200 Response
{
"blendable": true,
"reason": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Information on whether models can be blended and why. | BlenderInfoRetrieveResponse |
404 | Not Found | This resource does not exist. | None |
422 | Unprocessable Entity | Unable to process request. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/blenderModels/{modelId}/¶
Retrieve a blender. Blenders are a special type of models, so the response includes all attributes that would be in a response to GET /api/v2/projects/{projectId}/models/{modelId}/ as well as some additional ones.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/blenderModels/{modelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"blenderMethod": "string",
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelIds": [
"string"
],
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The blender model. | BlenderRetrieveResponse |
404 | Not Found | Specified blender not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/combinedModels/¶
Retrieve all existing combined models for this project. .. note::
To retrieve information on the segments for a combined model, retrieve the combined model using [GET /api/v2/projects/{projectId}/combinedModels/{combinedModelId}/][get-apiv2projectsprojectidcombinedmodelscombinedmodelid]
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/combinedModels/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | Number of results to skip. |
limit | query | integer | false | At most this many results are returned. The default may change without notice. |
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"combinedModelId": "string",
"isActiveCombinedModel": false,
"modelCategory": "combined",
"projectId": "string",
"segmentationTaskId": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | CombinedModelListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/combinedModels/{combinedModelId}/¶
Retrieve an existing combined model. If available, contains information on which champion model is used for each segment.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/combinedModels/{combinedModelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The ID of the project. |
combinedModelId | path | string | true | The ID of combined model. |
Example responses¶
200 Response
{
"combinedModelId": "string",
"isActiveCombinedModel": false,
"modelCategory": "combined",
"projectId": "string",
"segmentationTaskId": "string",
"segments": [
{
"modelId": "string",
"projectId": "string",
"segment": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | CombinedModelResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/combinedModels/{combinedModelId}/segments/¶
Retrieve Combined Model segments info (name, related project & model details).
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/combinedModels/{combinedModelId}/segments/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | Number of results to skip. |
limit | query | integer | false | At most this many results are returned. The default may change without notice. |
searchSegmentName | query | string | false | Case insensitive search against segment name. |
projectId | path | string | true | The ID of the project. |
combinedModelId | path | string | true | The ID of combined model. |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"autopilotDone": true,
"holdoutUnlocked": true,
"isFrozen": true,
"modelAssignedBy": "string",
"modelAwardTime": "2019-08-24T14:15:22Z",
"modelCount": 0,
"modelIcon": [
0
],
"modelId": "string",
"modelMetrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelType": "string",
"projectId": "string",
"projectPaused": true,
"projectStage": "modeling",
"projectStageDescription": "string",
"projectStatusError": "string",
"rowCount": 0,
"rowPercentage": 0,
"segment": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | CombinedModelSegmentsPaginatedResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/combinedModels/{combinedModelId}/segments/download/¶
Download Combined Model segments info (name, related project & model details) as a CSV.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/combinedModels/{combinedModelId}/segments/download/ \
-H "Accept: text/csv" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The ID of the project. |
combinedModelId | path | string | true | The ID of combined model. |
Example responses¶
200 Response
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | string |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
200 | Content-Disposition | string | Contains an auto generated filename for this download. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/datetimeModels/¶
List all the models from a datetime partitioned project.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/datetimeModels/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | Number of results to skip. |
limit | query | integer | false | At most this many results are returned. The default may change without notice. |
bulkOperationId | query | string | false | the ID of the bulk model operation. If specified, only models submitted in scope of this operation will be shown. |
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"backtests": [
{
"index": 0,
"score": 0,
"status": "COMPLETED",
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"blueprintId": "string",
"dataSelectionMethod": "duration",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featurelistId": "string",
"featurelistName": "string",
"forecastWindowEnd": 0,
"forecastWindowStart": 0,
"hasFinetuners": true,
"holdoutScore": 0,
"holdoutStatus": "COMPLETED",
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"backtesting\": 0.50166,\n \"backtestingScores\": [0.51206, 0.49436, null, 0.62516],\n \"crossValidation\": null\n },\n \"RMSE\": {\n \"holdout\": null,\n \"validation\": 21.0836,\n \"backtesting\": 23.361932,\n \"backtestingScores\": [0.4403, 0.4213, null, 0.5132],\n \"crossValidation\": null\n }\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": null,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingInfo": {
"holdoutTrainingDuration": "string",
"holdoutTrainingEndDate": "2019-08-24T14:15:22Z",
"holdoutTrainingRowCount": 0,
"holdoutTrainingStartDate": "2019-08-24T14:15:22Z",
"predictionTrainingDuration": "string",
"predictionTrainingEndDate": "2019-08-24T14:15:22Z",
"predictionTrainingRowCount": 0,
"predictionTrainingStartDate": "2019-08-24T14:15:22Z"
},
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z",
"windowsBasisUnit": "MILLISECOND"
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The datetime partitioned project's models | DatetimeModelsResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/datetimeModels/¶
Train a new datetime model.
All durations and datetimes should be specified in accordance with the :ref:timestamp and duration formatting rules<time_format>
.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/datetimeModels/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"blueprintId": "string",
"featurelistId": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 2,
"samplingMethod": "random",
"sourceProjectId": "string",
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingRowCount": 0,
"useProjectSettings": true
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | TrainDatetimeModel | false | none |
Example responses¶
202 Response
{
"message": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | The model has been successfully submitted. | DatetimeModelSubmissionResponse |
422 | Unprocessable Entity | There was an error submitting the specified job. See the message field for more details. |
None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/datetimeModels/fromModel/¶
Retrain an existing datetime model using a new training period for the model training set (with optional time window sampling) or different feature list.
All durations and datetimes should be specified in accordance with the :ref:timestamp and duration formatting rules<time_format>
.
Note that only one of trainingDuration
or trainingRowCount
or trainingStartDate
and trainingEndDate
should be specified. If trainingStartDate
and trainingEndDate
are specified, the source model must be frozen.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/datetimeModels/fromModel/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"featurelistId": "string",
"modelId": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 2,
"samplingMethod": "random",
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z",
"useProjectSettings": true
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | RetrainDatetimeModel | false | none |
Example responses¶
202 Response
{
"message": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Retrain an existing datetime model using a new sample size and/or feature list. | DatetimeModelSubmissionResponse |
403 | Forbidden | User does not have permissions to manage models. | None |
404 | Not Found | Model with specified modelId doesn't exist, or user does not have access to the project. |
None |
422 | Unprocessable Entity | Model with specified modelId is deprecated, or it doesn't support retraining with specified parameters. |
None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/datetimeModels/{modelId}/¶
Look up a particular datetime model
All durations and datetimes are specified in accordance with :ref:timestamp and duration formatting rules <time_format>
.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/datetimeModels/{modelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"backtests": [
{
"index": 0,
"score": 0,
"status": "COMPLETED",
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"blueprintId": "string",
"dataSelectionMethod": "duration",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featurelistId": "string",
"featurelistName": "string",
"forecastWindowEnd": 0,
"forecastWindowStart": 0,
"hasFinetuners": true,
"holdoutScore": 0,
"holdoutStatus": "COMPLETED",
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"backtesting\": 0.50166,\n \"backtestingScores\": [0.51206, 0.49436, null, 0.62516],\n \"crossValidation\": null\n },\n \"RMSE\": {\n \"holdout\": null,\n \"validation\": 21.0836,\n \"backtesting\": 23.361932,\n \"backtestingScores\": [0.4403, 0.4213, null, 0.5132],\n \"crossValidation\": null\n }\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": null,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingInfo": {
"holdoutTrainingDuration": "string",
"holdoutTrainingEndDate": "2019-08-24T14:15:22Z",
"holdoutTrainingRowCount": 0,
"holdoutTrainingStartDate": "2019-08-24T14:15:22Z",
"predictionTrainingDuration": "string",
"predictionTrainingEndDate": "2019-08-24T14:15:22Z",
"predictionTrainingRowCount": 0,
"predictionTrainingStartDate": "2019-08-24T14:15:22Z"
},
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z",
"windowsBasisUnit": "MILLISECOND"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Datetime model | DatetimeModelDetailsResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/datetimeModels/{modelId}/backtests/¶
Score all the available backtests of a datetime model.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/datetimeModels/{modelId}/backtests/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Scoring of all the available backtests of a datetime model has been successfully requested. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/deploymentReadyModels/¶
Prepare a specific model for deployment. This model will go through the recommendation stages.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/deploymentReadyModels/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"modelId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | PrepareForDeployment | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
201 | Created | Start preparing the model for deployment. | None |
422 | Unprocessable Entity | An error occurred when submitting the model job | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/eureqaDistributionPlot/{solutionId}/¶
Retrieve Eureqa model details plot.
Available for classification projects only
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/eureqaDistributionPlot/{solutionId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
solutionId | path | string | true | The ID of the solution to return data for. |
Example responses¶
200 Response
{
"bins": [
{
"binEnd": 0,
"binStart": 0,
"negatives": 0,
"positives": 0
}
],
"complexity": 0,
"error": 0,
"errorMetric": "string",
"eureqaSolutionId": "string",
"expression": "string",
"expressionAnnotated": "string",
"threshold": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Eureqa model details plot. | EureqaDistributionDetailResponse |
404 | Not Found | Data was not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/eureqaModelDetail/{solutionId}/¶
Retrieve Eureqa model details plot.
Available for regression projects only
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/eureqaModelDetail/{solutionId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
solutionId | path | string | true | The ID of the solution to return data for. |
Example responses¶
200 Response
{
"complexity": 0,
"error": 0,
"errorMetric": "string",
"eureqaSolutionId": "string",
"expression": "string",
"expressionAnnotated": "string",
"plotData": [
{
"actual": 0,
"predicted": 0,
"row": 0
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Eureqa model details plot. | EureqaModelDetailResponse |
404 | Not Found | Data was not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/eureqaModels/¶
Create a new model from an existing eureqa solution.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/eureqaModels/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"parentModelId": "string",
"solutionId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | EureqaLeaderboardEntryPayload | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Request accepted, creation is underway. | None |
404 | Not Found | Data not found. | None |
422 | Unprocessable Entity | Model for this solution already exists. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
200 | Location | string | The location at which the new model can be retrieved. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/eureqaModels/{modelId}/¶
Retrieve the pareto front for the specified Eureqa model.
Only the best solution in the pareto front will have a corresponding model initially. Models can be created for other solutions using POST /api/v2/projects/{projectId}/eureqaModels/.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/eureqaModels/{modelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"errorMetric": "string",
"hyperparameters": {
"buildingBlocks": {},
"errorMetric": "string",
"maxGenerations": 32,
"numThreads": 0,
"priorSolutions": [
"string"
],
"randomSeed": 0,
"splitMode": "custom",
"syncMigrations": true,
"targetExpressionFormat": "None",
"targetExpressionString": "string",
"timeoutSec": 0,
"trainingFraction": 1,
"trainingSplitExpr": "string",
"validationFraction": 1,
"validationSplitExpr": "string",
"weightExpr": "string"
},
"projectId": "string",
"solutions": [
{
"bestModel": true,
"complexity": 0,
"error": 0,
"eureqaSolutionId": "string",
"expression": "string",
"expressionAnnotated": "string"
}
],
"targetType": "Regression"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Pareto front for the Eureqa model. | ParetoFrontResponse |
404 | Not Found | Data was not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/frozenDatetimeModels/¶
Train a frozen datetime model. If no training data is specified, the frozen datetime model will be trained on the most recent data using an amount of data that is equivalent to the original model. However, if the equivalent duration does not provide enough rows for training, then the duration will be extended until the minimum is met. Note that this will require the holdout of the project to be unlocked.
All durations and datetimes should be specified in accordance with the :ref:timestamp and duration formatting rules<time_format>
.
Note that only one of trainingDuration
, trainingRowCount
, trainingStartDate
and trainingEndDate
, or useProjectSettings
may be specified.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/frozenDatetimeModels/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"modelId": "string",
"samplingMethod": "random",
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z",
"useProjectSettings": true
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | TrainDatetimeFrozenModel | false | none |
Example responses¶
202 Response
{
"message": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | The model has been successfully submitted. | DatetimeModelSubmissionResponse |
403 | Forbidden | User does not have permissions to manage models. | None |
404 | Not Found | Model with specified modelId does not exist, or user does not have access to the project. |
None |
422 | Unprocessable Entity | Model with specified modelId is deprecated, or it does not support retraining with specified parameters. |
None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/frozenModels/¶
List all frozen models from a project.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/frozenModels/?offset=0&limit=0 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | true | This many results will be skipped. |
limit | query | integer | true | At most this many results are returned. If 0, all results. |
withMetric | query | string | false | If specified, the returned models will only have scores for this metric. If not, all metrics will be included. |
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | A list of frozen models in the project. | FrozenModelListResponse |
404 | Not Found | This resource does not exist. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/frozenModels/¶
Train a new frozen model with parameters from an existing model. Frozen models use tuning parameters from another model on the leaderboard, allowing them to be retrained on a larger amount of the training data more efficiently.
To specify the amount of data to use to train the model, use either samplePct
to express a percentage of the rows of the dataset to use or trainingRowCount
to express the number of rows to use.
If neither samplePct
or trainingRowCount
is specified, the model will be trained on the maximum available training data that can be used to train an in-memory model.
For projects using smart sampling, samplePct
and trainingRowCount
will be interpreted as a percent or number of rows of the minority class.
When configuring retraining sample sizes for models in projects with large row counts, DataRobot recommends requesting sample sizes using integer row counts instead of percentages. This is because percentages map to many actual possible row counts and only one of which is the actual sample size for up to validation. For example, if a project has 199,408 rows and you request a 64% sample size, any number of rows between 126,625 rows and 128,618 rows maps to 64% of the data. Using actual integer row counts (or project.max_training_rows
) avoids ambiguity around how many rows of data you want the model to use.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/frozenModels/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"modelId": "string",
"nClusters": 2,
"samplePct": 0,
"trainingRowCount": 0
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | FrozenModelCreate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | The frozen model has been successfully submitted. | None |
404 | Not Found | This resource does not exist. | None |
422 | Unprocessable Entity | Unable to process request. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
204 | Location | string | url | Contains a url at which the job processing the model can be retrieved as with GET /api/v2/projects/{projectId}/modelJobs/{jobId}/.. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/frozenModels/{modelId}/¶
Look up a particular frozen model. If model with given ID exists but it's not frozen, returns 404 Not Found.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/frozenModels/{modelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The frozen model. | ModelDetailsResponse |
404 | Not Found | No such frozen model found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/incrementalLearningModels/fromModel/¶
Train a new incremental learning model based on an existing model and external data, that was not seen during partitioning.
Notice: Endpoint is currently in [PUBLIC_PREVIEW]. Do not use it in production workflows to reduce risk. See details:
This endpoint depends on the following features that are subject to change.
Feature Flag | Maturity | Enabled by default | Description |
---|---|---|---|
INCREMENTAL_LEARNING | PUBLIC_PREVIEW | false | Enables Incremental Learning. This allows model retraining to continue with an infinite amount of data. |
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/incrementalLearningModels/fromModel/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"dataStageCompression": "zip",
"dataStageDelimiter": "string",
"dataStageEncoding": "UTF-8",
"dataStageId": "string",
"dataStageStorageType": "csv",
"modelId": "string",
"trainingDataName": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | TrainIncrementalLearningModel | false | none |
Example responses¶
202 Response
{
"message": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Incremental learning model submission response | ModelRetrainResponse |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/modelJobs/¶
List modeling jobs.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/modelJobs/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
status | query | string | false | If provided, only jobs with the same status will be included in the results; otherwise, queued and inprogress jobs (but not errored jobs) will be returned. |
projectId | path | string | true | The project ID. |
Enumerated Values¶
Parameter | Value |
---|---|
status | [queue , inprogress , error ] |
Example responses¶
200 Response
[
{
"data": [
{
"blueprintId": "string",
"featurelistId": "string",
"id": "string",
"isBlocked": true,
"isTrainedOnGpu": true,
"modelCategory": "model",
"modelId": "string",
"modelType": "string",
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"status": "queue"
}
]
}
]
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | List of modeling jobs. | Inline |
Response Schema¶
Status Code 200
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | [ModelingJobListResponse] | false | none | |
» data | [ModelJobResponse] | true | List of modeling jobs. | |
»» blueprintId | string | true | The blueprint used by the model - note that this is not an ObjectId. | |
»» featurelistId | string | true | The ID of the featurelist the model is using. | |
»» id | string | true | The job ID. | |
»» isBlocked | boolean | true | True if a job is waiting for its dependencies to be resolved first. | |
»» isTrainedOnGpu | boolean | false | True if the job was trained using GPU capabilities | |
»» modelCategory | string | true | Indicates what kind of model this is. Will be combined for combined models. |
|
»» modelId | string | true | The ID of the model | |
»» modelType | string | true | The type of model used by the job. | |
»» processes | [string] | true | List of processes the modeling job includes | |
»» projectId | string | true | The project the job belongs to. | |
»» samplePct | number | false | The percentage of the dataset the job is using. | |
»» status | string | true | The status of the job. |
Enumerated Values¶
Property | Value |
---|---|
modelCategory | [model , prime , blend ] |
status | [queue , inprogress , error , ABORTED , COMPLETED ] |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
DELETE /api/v2/projects/{projectId}/modelJobs/{jobId}/¶
Cancel a modeling job
Code samples¶
# You can also use wget
curl -X DELETE https://app.datarobot.com/api/v2/projects/{projectId}/modelJobs/{jobId}/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID. |
jobId | path | string | true | The job ID |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | The job has been successfully cancelled. | None |
404 | Not Found | no job with jobId found, or the job has already completed | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/modelJobs/{jobId}/¶
Look up a particular modeling job
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/modelJobs/{jobId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID. |
jobId | path | string | true | The job ID |
Example responses¶
200 Response
{
"blueprintId": "string",
"featurelistId": "string",
"id": "string",
"isBlocked": true,
"isTrainedOnGpu": true,
"modelCategory": "model",
"modelId": "string",
"modelType": "string",
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"status": "queue"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | A modeling job | ModelJobResponse |
303 | See Other | Task is completed, see Location header for the location of a new resource | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
200 | Location | string | url | if a status code 303 was returned, will contain a url at which the completed model can be retrieved` |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/modelRecords/¶
Retrieve model records, supports filtering and search
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/modelRecords/?offset=0&limit=100 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
withMetric | query | string | false | If specified, the returned models will only have scores for this metric. If not, all metrics will be included. |
showInSampleScores | query | boolean | false | If specified, will return metric scores for models trained into validation/holdout for projects that do not have stacked predictions. |
characteristics | query | array[string] | false | A characteristics to filter models with. Only those models which have all specified characteristics are returned. |
searchTerm | query | string | false | Filter models by the string expression in the description, case insensitive. |
labels | query | array[string] | false | Filter models by labels. Only those models which have all specified labels are returned. |
blueprints | query | string | false | Filter models by blueprint ids. |
families | query | array[string] | false | Filter models by families. |
featurelists | query | string | false | Filter models by featurelist names. |
trainingFilters | query | string | false | Filter models by training length or type. Could be training duration in string representation, 'Start/end date', 'Project settings' constants or number of rows. Training duration for datetime partitioned projects may have up to three parts: P6Y0M0D-78-Random , returns models trained on6 years, with sampling rate 78%, randomly taken from the training window. Example of the row count with sampling method: 150-Random |
numberOfClusters | query | string | false | Filter models by number of clusters. Applicable only in unsupervised clustering projects. |
sortByMetric | query | string | false | Metric to order models by. If omitted, the project metric is used. |
sortByPartition | query | string | false | Partition to use when ordering models by metric. If omitted, the validation partition is used. |
offset | query | integer | true | Number of results that are skipped. |
limit | query | integer | true | Maximum number of models to return. |
projectId | path | string | true | The project ID. |
Enumerated Values¶
Parameter | Value |
---|---|
characteristics | [frozen , new series optimized , trained on gpu , with exportable coefficients , with mono constraints , with rating table , with scoring code ] |
labels | [prepared for deployment , starred ] |
families | [Adaptive Boosting , Anomaly Detection , Blender , Calibrator , Clustering , Custom , Decision Tree , Document , Naive , ElasticNet Generalized Linear Model , Eureqa , Eureqa Time-Series , External Prediction Model , Factorization Machine , Generalized Additive Model , Generalized Linear Model , Gradient Boosting Machine , Image , K Nearest Neighbors , Naive Bayes , Neural Network , Other , Random Forest , Rule Induction , Summarized Categorical , Support Vector Machine , Text Mining , Time-Series Neural Network , Traditional Time-Series , Two Stage , Vowpal Wabbit ] |
sortByPartition | [backtesting , crossValidation , validation , holdout ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"blueprintId": "string",
"featurelistId": "string",
"featurelistName": "string",
"id": "string",
"isFrozen": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelNumber": 0,
"modelType": "string",
"parentModelId": "string",
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"trainingRowCount": 0
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | ModelRecordsResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/¶
Lists all the models from a project.
.. minversion:: v2.34 .. deprecated:: v2.34
Use [GET /api/v2/projects/{projectId}/modelRecords/][get-apiv2projectsprojectidmodelrecords] instead.
Fewer attributes are returned in the response of model records route.
Removed attributes:
monotonic_increasing_featurelist_id -- Retrievable from the blueprint level
monotonic_decreasing_featurelist_id -- Retrievable from the blueprint level.
supports_composable_ml -- Retrievable from the blueprint level.
supports_monotonic_constraints -- Retrievable from the blueprint level.
has_empty_clusters -- Retrievable from the individual model level.
is_n_clusters_dynamically_determined -- Retrievable from the individual model level.
prediction_threshold -- Retrievable from the individual model level.
prediction_threshold_read_only - Retrievable from the individual model level.
Changed attributes:
n_clusters becomes number_of_clusters and is returned for unsupervised clustering models.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
withMetric | query | string | false | If specified, the returned models will only have scores for this metric. If not, all metrics will be included. |
showInSampleScores | query | boolean | false | If specified, will return metric scores for models trained into validation/holdout for projects that do not have stacked predictions. |
name | query | string | false | If specified, filters for models with a model type matching name . |
samplePct | query | number | false | If specified, filters for models with a matching sample percentage. |
isStarred | query | string | false | If specified, filters for models marked as starred. |
orderBy | query | string | false | A comma-separated list of metrics to sort by. If metric is prefixed with a '-', models are sorted by this metric in descending order, otherwise are sorted in ascending order. Valid sorting metrics are metric and samplePct . Use of metric sorts models by metric value selected for this project using the validation score. Use of the prefix accounts for the direction of the metric, so -metric will sort in order of decreasing 'goodness', which may be opposite to the natural numerical order. If not specified, -metric will be used. |
projectId | path | string | true | The project ID. |
Enumerated Values¶
Parameter | Value |
---|---|
isStarred | [false , False , true , True ] |
orderBy | [metric , -metric , samplePct , -samplePct ] |
Example responses¶
200 Response
[
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
]
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The project's models | Inline |
Response Schema¶
Status Code 200
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | [ModelDetailsResponse] | false | none | |
» blueprintId | string | true | The blueprint used to construct the model. | |
» dataSelectionMethod | string | false | Identifies which setting defines the training size of the model when making predictions and scoring. Only used by datetime models. | |
» featurelistId | string¦null | true | The ID of the feature list used by the model. | |
» featurelistName | string¦null | true | The name of the feature list used by the model. If null, themodel was trained on multiple feature lists. | |
» hasFinetuners | boolean | false | Whether a model has fine tuners. | |
» id | string | true | The ID of the model. | |
» isAugmented | boolean | false | Whether a model was trained using augmentation. | |
» isFrozen | boolean | true | Indicates whether the model is frozen, i.e., uses tuning parameters from a parent model. | |
» isNClustersDynamicallyDetermined | boolean | false | Whether number of clusters is dynamically determined. Only valid in unsupervised clustering projects. | |
» isStarred | boolean | true | Indicates whether the model has been starred. | |
» isTrainedIntoHoldout | boolean | true | Indicates if model used holdout data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed validation size. | |
» isTrainedIntoValidation | boolean | true | Indicates if model used validation data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed training size. | |
» isTrainedOnGpu | boolean | true | Whether the model was trained using GPU workers. | |
» lifecycle | ModelLifecycle | true | Object returning model lifecycle. | |
»» reason | string¦null | true | Reason for lifecycle stage. None if model is active. | |
»» stage | string | true | Model lifecycle stage. | |
» linkFunction | string¦null | true | The link function the final modeler uses in the blueprint. If no link function exists, returns null. | |
» metrics | object | true | The performance of the model according to various metrics, where each metric has validation, crossValidation, holdout, and training scores reported, or null if they have not been computed. | |
» modelCategory | string | true | Indicates the type of model. Returns prime for DataRobot Prime models, blend for blender models, combined for combined models, and model for all other models. |
|
» modelFamily | string | true | the family model belongs to, e.g. SVM, GBM, etc. | |
» modelFamilyFullName | string | true | The full name of the family that the model belongs to. For e.g., Support Vector Machine, Gradient Boosting Machine, etc. | |
» modelNumber | integer¦null | true | minimum: 0 (exclusive) |
The model number from the Leaderboard. |
» modelType | string | true | Identifies the model (e.g.,Nystroem Kernel SVM Regressor ). |
|
» monotonicDecreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically decreasing relationship to the target. If null, no such constraints are enforced. | |
» monotonicIncreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically increasing relationship to the target. If null, no such constraints are enforced. | |
» nClusters | integer¦null | false | The number of clusters to use in the specified unsupervised clustering model. Only valid in unsupervised clustering projects. | |
» parentModelId | string¦null | true | The ID of the parent model if the model is frozen or a result of incremental learning. Null otherwise. | |
» predictionThreshold | number | true | maximum: 1 minimum: 0 |
threshold used for binary classification in predictions. |
» predictionThresholdReadOnly | boolean | true | indicates whether modification of a predictions threshold is forbidden. Since v2.22 threshold modification is allowed. | |
» processes | [string]¦null | true | maxItems: 100 |
The list of processes used by the model. |
» projectId | string | true | The ID of the project to which the model belongs. | |
» samplePct | number¦null | true | minimum: 0 (exclusive) |
The percentage of the dataset used in training the model. |
» samplingMethod | string | false | indicates sampling method used to select training data in datetime models. For row-based project this is the way how requested number of rows are selected.For other projects (duration-based, start/end, project settings) - how specified percent of rows (timeWindowSamplePct) is selected from specified time window. | |
» supportsComposableMl | boolean | true | indicates whether this model is supported in Composable ML. | |
» supportsMonotonicConstraints | boolean | true | whether this model supports enforcing monotonic constraints | |
» timeWindowSamplePct | integer¦null | false | maximum: 100 (exclusive) minimum: 0 (exclusive) |
An integer between 1 and 99, indicating the percentage of sampling within the time window. The points kept are determined by samplingMethod option. Will be null if no sampling was specified. Only used by datetime models. |
» trainingDuration | string¦null | true | the duration spanned by the dates in the partition column for the data used to train the model | |
» trainingEndDate | string(date-time)¦null | true | the end date of the dates in the partition column for the data used to train the model | |
» trainingRowCount | integer¦null | true | minimum: 0 (exclusive) |
The number of rows used to train the model. |
» trainingStartDate | string(date-time)¦null | true | the start date of the dates in the partition column for the data used to train the model |
Enumerated Values¶
Property | Value |
---|---|
dataSelectionMethod | [duration , rowCount , selectedDateRange , useProjectSettings ] |
stage | [active , deprecated , disabled ] |
modelCategory | [model , prime , blend , combined , incrementalLearning ] |
samplingMethod | [random , latest ] |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/models/¶
Train a new model. To specify the amount of data to use to train the model, use either samplePct
to express a percentage of the rows of the dataset to use or trainingRowCount
to express the number of rows to use. If neither samplePct
or trainingRowCount
is specified, the model will be trained on the maximum available training data that can be used to train an in-memory model. For projects using smart sampling, samplePct and trainingRowCount will be interpreted as a percent or number of rows of the minority class.
When configuring retraining sample sizes for models in projects with large row counts, DataRobot recommends requesting sample sizes using integer row counts instead of percentages. This is because percentages map to many actual possible row counts and only one of which is the actual sample size for up to validation. For example, if a project has 199,408 rows and you request a 64% sample size, any number of rows between 126,625 rows and 128,618 rows maps to 64% of the data. Using actual integer row counts (or project.max_training_rows
) avoids ambiguity around how many rows of data you want the model to use.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/models/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"blueprintId": "string",
"featurelistId": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 2,
"samplePct": 0,
"scoringType": "validation",
"sourceProjectId": "string",
"trainingRowCount": 0
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID. |
body | body | TrainModel | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Creation has successfully started. See the Location header. | None |
422 | Unprocessable Entity | Could not create new job | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/models/fromModel/¶
Retrain an existing model using a new sample size and/or feature list.When configuring retraining sample sizes for models in projects with large row counts, DataRobot recommends requesting sample sizes using integer row counts instead of percentages. This is because percentages map to many actual possible row counts and only one of which is the actual sample size for up to validation. For example, if a project has 199,408 rows and you request a 64% sample size, any number of rows between 126,625 rows and 128,618 rows maps to 64% of the data. Using actual integer row counts (or project.max_training_rows
) avoids ambiguity around how many rows of data you want the model to use.
Note that only one of samplePct
or trainingRowCount
should be specified.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/models/fromModel/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"featurelistId": "string",
"modelId": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 2,
"samplePct": 0,
"scoringType": "validation",
"trainingRowCount": 0
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | RetrainModel | false | none |
Example responses¶
202 Response
{
"message": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Retrain an existing model using a new sample size and/or feature list. | ModelRetrainResponse |
422 | Unprocessable Entity | model with specified modelId is deprecated, or it doesn't support retraining using a new sample size and/or feature list |
None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
DELETE /api/v2/projects/{projectId}/models/{modelId}/¶
Delete a model from the leaderboard
Code samples¶
# You can also use wget
curl -X DELETE https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | The model has been successfully deleted. | None |
404 | Not Found | This resource does not exist. | None |
422 | Unprocessable Entity | Unable to process the request. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/¶
Look up a particular model.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The model | ModelDetailsResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/projects/{projectId}/models/{modelId}/¶
Updates a model's attribute(s)
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"isStarred": true,
"predictionThreshold": 1
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
body | body | ModelUpdate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | The model has been successfully updated with new attributes. | None |
404 | Not Found | This resource does not exist. | None |
422 | Unprocessable Entity | Unable to process the request. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/models/{modelId}/advancedTuning/¶
Submit a job to make a new version of the model with different advanced tuning parameters. Note: This route currently supports all models other than: OSS, blenders, prime, scaleout, baseline and user-created. Currently, only single-stage models (most simple models) are supported. Blueprints that run multiple steps, for example one step to predict zero vs nonzero and a second step to determine the value of nonzero predictions, are not supported. (:ref:Advanced Tuning documentation <grid_search>
). Parameters may be omitted from this endpoint. If a parameter is omitted, its currentValue
will be used. To see the possible parameter IDs and constraints on possible values, see GET /api/v2/projects/{projectId}/models/{modelId}/advancedTuning/parameters/.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/advancedTuning/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"tuningDescription": "string",
"tuningParameters": [
{
"parameterId": "string",
"value": "string"
}
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
body | body | ModelAdvancedTuning | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | The job has been successfully submitted. See the Location header. | None |
403 | Forbidden | Permission denied creating advanced tuned model | None |
404 | Not Found | This resource does not exist. | None |
413 | Payload Too Large | Tuning request is too large | None |
422 | Unprocessable Entity | Could not create new job. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | A url at which the job processing the model can be retrieved. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/advancedTuning/parameters/¶
Retrieve information about all advanced tuning parameters available for the specified model. Note: This route currently supports all models other than: OSS, blenders, prime, scaleout, baseline and user-created
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/advancedTuning/parameters/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"tuningDescription": "string",
"tuningParameters": [
{
"constraints": {
"ascii": {
"supportsGridSearch": true
},
"float": {
"max": 0,
"min": 0,
"supportsGridSearch": true
},
"floatList": {
"maxLength": 0,
"maxVal": 0,
"minLength": 0,
"minVal": 0,
"supportsGridSearch": true
},
"int": {
"max": 0,
"min": 0,
"supportsGridSearch": true
},
"intList": {
"maxLength": 0,
"maxVal": 0,
"minLength": 0,
"minVal": 0,
"supportsGridSearch": true
},
"select": {
"supportsGridSearch": true,
"values": [
"string"
]
},
"selectgrid": {
"supportsGridSearch": true,
"values": [
"string"
]
},
"unicode": {
"supportsGridSearch": true
}
},
"currentValue": "string",
"defaultValue": "string",
"parameterId": "string",
"parameterName": "string",
"taskName": "string",
"vertexId": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The information about all advanced tuning parameters available for the specified model. | AdvancedTuningArgumentsRetrieveResponse |
403 | Forbidden | Permission denied creating advanced tuned model. | None |
404 | Not Found | This resource does not exist. | None |
422 | Unprocessable Entity | This model does not support advanced tuning. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/clusterNames/¶
Retrieve all cluster names assigned to an unsupervised cluster model
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/clusterNames/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"clusters": [
{
"name": "string",
"percent": 100
},
{
"name": "string",
"percent": 100
}
],
"modelId": "string",
"projectId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Retrieve all cluster names for the model | ClusterNamesResponse |
404 | Not Found | Could not find unsupervised clustering model. Possible reasons include: 1. Provided model id points to a model that does not exist in specified project. 2. Provided model has incompatible type. Method requires model to be unsupervised clustering model. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/projects/{projectId}/models/{modelId}/clusterNames/¶
Update and then retrieve all cluster names assigned to an unsupervised cluster model
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/clusterNames/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"clusterNameMappings": [
{
"currentName": "string",
"newName": "string"
}
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
body | body | ClusterNamesUpdateParam | false | none |
Example responses¶
200 Response
{
"clusters": [
{
"name": "string",
"percent": 100
},
{
"name": "string",
"percent": 100
}
],
"modelId": "string",
"projectId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Update cluster names and then retrieve all cluster names for the model | ClusterNamesResponse |
404 | Not Found | Could not find unsupervised clustering model. Possible reasons include: 1. Provided model id points to a model which does not exists in specified project. 2. Provided model has incompatible type. Method requires model to be unsupervised clustering model. | None |
422 | Unprocessable Entity | The request cannot be processed. Possible reasons include: 1. Mapping contains invalid current cluster name and referenced cluster was not found. 2. Mapping is invalid as after update, clusters will not be uniquely identifiable by name. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/models/{modelId}/crossValidation/¶
Run Cross Validation on a model.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/crossValidation/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
body | body | Empty | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | The model has been successfully submitted. | None |
422 | Unprocessable Entity | Unable to process the request. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | Contains a url at which the job processing the model can be retrieved |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/crossValidationScores/¶
Get Cross Validation scores for each partition in a model.
.. note:: Individual partition scores are only available for newer models; older models that
have cross validation score calculated will need to be retrained.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/crossValidationScores/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
metric | query | string | false | Set to the name of a metric to only return results for that metric. |
partition | query | number | false | Set to a value such as 1.0, 2.0 to only return results for the specified partition. |
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"cvScores": "\n {\n \"cvScores\": {\n \"FVE Gamma\": {\n \"0.0\": 0.24334,\n \"1.0\": 0.17757,\n \"2.0\": 0.21803,\n \"3.0\": 0.20185,\n \"4.0\": 0.20576\n },\n \"FVE Poisson\": {\n \"0.0\": 0.24527,\n \"1.0\": 0.22092,\n \"2.0\": 0.22451,\n \"3.0\": 0.24417,\n \"4.0\": 0.21654\n }\n }\n }\n"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The Cross Validation scores for each partition in a model. | CrossValidationRetrieveResponse |
404 | Not Found | Not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/features/¶
List the features used in a model
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/features/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"aPrioriFeatureNames": [
"string"
],
"featureNames": [
"string"
],
"knownInAdvanceFeatureNames": [
"string"
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The features used in a model. | ModelFeatureListResponse |
404 | Not Found | This resource does not exist. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/missingReport/¶
Retrieve a summary of how the model's subtasks handle missing values Only models built after the missing value report feature was added will have reports, and only models with at least one imputation or encoding task, e.g. ordinal encoding, missing value imputation. Blenders and scaleout models do not support Missing Value reports.
The report will describe how each feature's missing values were treated, and report how many
missing values were present in the training data. Features which were not processed by a
given blueprint task will not mention it: for instance, a categorical feature with many
unique values may not be considered eligible for processing by a One-Hot Encoding
Report is collected for those features which are considered eligible by given
blueprint task. For instance, categorical feature with a lot of unique values may not be
considered as eligible in One-Hot Encoding Task.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/missingReport/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"missingValuesReport": [
{
"feature": "string",
"missingCount": 0,
"missingPercentage": 1,
"tasks": {
"property1": {
"descriptions": [
"string"
],
"name": "string"
},
"property2": {
"descriptions": [
"string"
],
"name": "string"
}
},
"type": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Retrieve a summary of how the model's subtasks handle missing values. | MissingReportRetrieve |
404 | Not Found | Could not found missing value report for provided project & model id. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/numIterationsTrained/¶
Retrieve the actual number of iterations or estimators trained by a tree-based early stopping model.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/numIterationsTrained/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"data": [
{
"numIterations": 0,
"stage": "string"
}
],
"modelId": "string",
"projectId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The number of estimators/iterations trained | NumIterationsTrainedResponse |
404 | Not Found | Cannot retrieve early stopping information for this model. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/parameters/¶
Retrieve model parameters. These are the parameters that appear in the webapp on the Coefficients
tab. Note that they are only available for some models.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/parameters/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"derivedFeatures": [
{
"coefficient": 0,
"derivedFeature": "string",
"originalFeature": "string",
"stageCoefficients": [
{
"coefficient": 0,
"stage": "string"
}
],
"transformations": [
{
"name": "string",
"value": "string"
}
],
"type": "string"
}
],
"parameters": [
{
"name": "string",
"value": "string"
}
]
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The parameters of the model. | ModelParametersRetrieveResponse |
422 | Unprocessable Entity | Unable to process the request. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/predictionIntervals/¶
Retrieve prediction intervals (in descending order) that are already calculated for this model. Note that the project this model belongs to must be a time series project.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/predictionIntervals/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | This many results will be skipped. |
limit | query | integer | false | At most this many results are returned. |
projectId | path | string | true | The project to retrieve prediction intervals for. Must be a time series project. |
modelId | path | string | true | The model to retrieve prediction intervals for. |
Example responses¶
200 Response
{
"count": 0,
"data": [
0
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Request was successful. | PredictionIntervalsListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/models/{modelId}/predictionIntervals/¶
Submit a job to calculate prediction intervals for the specified percentiles for this model. Note that the project this model belongs to must be a time series project.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/predictionIntervals/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"percentiles": [
0
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project to calculate prediction intervals for. Must be a time series project. |
modelId | path | string | true | The model to calculate prediction intervals for. |
body | body | PredictionIntervalsCreate | false | none |
Example responses¶
202 Response
{
"message": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Job was successfully submitted. See Location header. | PredictionIntervalsCreateResponse |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | A url that can be polled to check the status. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/primeInfo/¶
Check if a model can be approximated by DataRobot Prime. Deprecated in v2.35.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/primeInfo/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project the model belongs to |
modelId | path | string | true | the model to check |
Example responses¶
200 Response
{
"canMakePrime": true,
"message": "string",
"messageId": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | PrimeInfoRetrieveResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/primeRulesets/¶
List all the rulesets approximating a model
When rulesets are created for the parent model, all of the rulesets are created at once, but not all rulesets have corresponding Prime models (until they are directly requested).
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/primeRulesets/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project the model belongs to |
modelId | path | string | true | the model to find approximating rulesets for |
Example responses¶
200 Response
[
{
"modelId": "string",
"parentModelId": "string",
"projectId": "string",
"ruleCount": 0,
"rulesetId": 0,
"score": 0
}
]
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | Inline |
Response Schema¶
Status Code 200
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | [PrimeRulesetsListResponse] | false | none | |
» modelId | string | true | the ID of the Prime model using this ruleset (if it exists) or null | |
» parentModelId | string | true | ID of the model this ruleset approximates | |
» projectId | string | true | the project this ruleset belongs to | |
» ruleCount | integer | true | the number of rules used by this ruleset | |
» rulesetId | integer | true | the ID of the ruleset | |
» score | number | true | the validation score of the ruleset |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/models/{modelId}/primeRulesets/¶
Approximate an existing model on the leaderboard with DataRobot Prime. A request body should be an empty JSON {}. Deprecated in v2.35.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/primeRulesets/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project the model to approximate belongs to |
modelId | path | string | true | the model to approximate |
body | body | PrimeRulesetsCreatePayload | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | The request was understood and accepted, and is now being worked on. See the Location header | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | a url that can be polled to check the status of the job |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/scoringCode/¶
Retrieve Scoring Code for making new predictions from an existing model offline. You need the "Scoring Code" feature enabled to use this route.
By default, returns a compiled executable JAR that can be executed locally to calculate model predictions, or it can be used as a library for a Java application. Execute it with the '--help` parameters to learn how to use it as a command-line utility. See model API documentation (https://javadoc.io/doc/com.datarobot/datarobot-prediction/latest/index.html) to be able to use it inside an existing Java application.
With the sourceCode query parameter set to 'true', returns a source code archive that can be used to review internal calculations of the model. This JAR is NOT executable.
See "https://docs.datarobot.com/en/docs/predictions/port-pred/scoring-code/index.html" in DataRobot application for more information.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/scoringCode/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
sourceCode | query | string | false | If set to "true", the downloaded JAR file will contain only the source code and will not be executable. |
projectId | path | string | true | the project that created the model |
modelId | path | string | true | the model to use |
Enumerated Values¶
Parameter | Value |
---|---|
sourceCode | [false , False , true , True ] |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | JAR file | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
200 | Content-Disposition | string | attachment; filename="<"filename">".jar The suggested filename for the scoring code is dynamically generated | |
200 | Content-Type | string | application/java-archive |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/models/{modelId}/supportedCapabilities/¶
Get supported capabilities for a model.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/models/{modelId}/supportedCapabilities/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
modelId | path | string | true | The model ID |
Example responses¶
200 Response
{
"eligibleForPrime": true,
"hasParameters": true,
"hasWordCloud": true,
"reasons": {
"supportsAccuracyOverTime": "string",
"supportsAnomalyAssessment": "string",
"supportsAnomalyOverTime": "string",
"supportsClusterInsights": "string",
"supportsConfusionMatrix": "string",
"supportsDocumentTextExtractionSampleInsight": "string",
"supportsForecastAccuracy": "string",
"supportsForecastVsActual": "string",
"supportsImageActivationMaps": "string",
"supportsImageEmbedding": "string",
"supportsLiftChart": "string",
"supportsPeriodAccuracy": "string",
"supportsPredictionExplanations": "string",
"supportsPredictionIntervals": "string",
"supportsResiduals": "string",
"supportsRocCurve": "string",
"supportsSeriesInsights": "string",
"supportsStability": "string"
},
"supportsAccuracyOverTime": true,
"supportsAnomalyAssessment": true,
"supportsAnomalyOverTime": true,
"supportsBlending": true,
"supportsClusterInsights": true,
"supportsCodeGeneration": true,
"supportsCoefficients": true,
"supportsConfusionMatrix": true,
"supportsDocumentTextExtractionSampleInsight": true,
"supportsEarlyStopping": true,
"supportsForecastAccuracy": true,
"supportsForecastVsActual": true,
"supportsImageActivationMaps": true,
"supportsImageEmbedding": true,
"supportsLiftChart": true,
"supportsModelPackageExport": true,
"supportsModelTrainingMetrics": true,
"supportsMonotonicConstraints": true,
"supportsNNVisualizations": true,
"supportsPeriodAccuracy": true,
"supportsPredictionExplanations": true,
"supportsPredictionIntervals": true,
"supportsResiduals": true,
"supportsRocCurve": true,
"supportsSeriesInsights": true,
"supportsShap": true,
"supportsStability": true
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Successfully returned model capability information. | ModelCapabilitiesRetrieveResponse |
404 | Not Found | Resource not found. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/primeFiles/¶
List all DataRobot Prime files available for download
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/primeFiles/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | this many results will be skipped |
limit | query | integer | false | at most this many results are returned. To specify no limit, use 0. The default may change and a maximum limit may be imposed without notice. |
parentModelId | query | string | false | if specified only Prime files approximating the specified parent model will be returned; otherwise all applicable Prime files will be returned. |
modelId | query | string | false | if specified only Prime files with code used in the specified prime model will be returned; otherwise all applicable Prime files will be returned |
projectId | path | string | true | the project to list available files for |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"id": "string",
"isValid": true,
"language": "Python",
"modelId": "string",
"parentModelId": "string",
"projectId": "string",
"rulesetId": 0
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | PrimeFileListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/primeFiles/¶
Request creation and validation of source code from a Prime model. Deprecated in v2.35.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/primeFiles/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"language": "Python",
"modelId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project the Prime model belongs to |
body | body | PrimeFileCreate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | prime validation job added to queue. See the Location header. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | a url that can be polled to check the status of prime validation job |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/primeFiles/{primeFileId}/¶
Retrieve metadata about a DataRobot Prime file available for download
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/primeFiles/{primeFileId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project the file belongs to |
primeFileId | path | string | true | the file to retrieve |
Example responses¶
200 Response
{
"id": "string",
"isValid": true,
"language": "Python",
"modelId": "string",
"parentModelId": "string",
"projectId": "string",
"rulesetId": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | PrimeFileResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/primeFiles/{primeFileId}/download/¶
Download code from an existing Prime file
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/primeFiles/{primeFileId}/download/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project the file belongs to |
primeFileId | path | string | true | the Prime file to download code from |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The response will contain a file with the executable code from the Prime file | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
200 | Content-Disposition | string | Will be attachment;filename="<"filename">". The suggested filename will depend on the language Prime file was generated for. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/primeModels/¶
List all Prime models in a project
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/primeModels/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | Number of results to skip. |
limit | query | integer | false | At most this many results are returned. The default may change without notice. |
projectId | path | string | true | the project to list models from |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"ruleCount": 0,
"rulesetId": 0,
"samplePct": 0,
"samplingMethod": "random",
"score": 0,
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | PrimeModelListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/primeModels/¶
Create a Prime model using a particular ruleset.
DataRobot Prime is not available for multiclass projects.
Once rulesets approximating a parent model have been created, using POST /api/v2/projects/(projectId)/models/(modelId)/primeRulesets/, this route will allow creation of a Prime model using one of those rulesets.
Available rulesets can be retrieved via GET /api/v2/projects/(projectId)/models/(modelId)/primeRulesets/. Deprecated in v2.35.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/primeModels/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"parentModelId": "string",
"rulesetId": 0
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project in which to create the model |
body | body | PrimeModelCreatePayload | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | Prime model creation job successfully added to queue. See the Location header. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | a url that can be polled to check the status of the job |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/primeModels/{modelId}/¶
Retrieve a Prime model details
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/primeModels/{modelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project to retrieve the model from |
modelId | path | string | true | the model to retrieve |
Example responses¶
200 Response
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"ruleCount": 0,
"rulesetId": 0,
"samplePct": 0,
"samplingMethod": "random",
"score": 0,
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | Prime models are an extension of models, so the response includes all attributes that would be in a response to GET /api/v2/projects/(projectId)/models/(modelId)/ as well as some additional ones. | PrimeModelDetailsRetrieveResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ratingTableModels/¶
Lists all the models from a project that have rating tables
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ratingTableModels/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
withMetric | query | string | false | If specified, the returned models will only have scores for this metric. If not, all metrics will be included. |
showInSampleScores | query | boolean | false | If specified, will return metric scores for models trained into validation/holdout for projects that do not have stacked predictions. |
name | query | string | false | If specified, filters for models with a model type matching name . |
samplePct | query | number | false | If specified, filters for models with a matching sample percentage. |
isStarred | query | string | false | If specified, filters for models marked as starred. |
orderBy | query | string | false | A comma-separated list of metrics to sort by. If metric is prefixed with a '-', models are sorted by this metric in descending order, otherwise are sorted in ascending order. Valid sorting metrics are metric and samplePct . Use of metric sorts models by metric value selected for this project using the validation score. Use of the prefix accounts for the direction of the metric, so -metric will sort in order of decreasing 'goodness', which may be opposite to the natural numerical order. If not specified, -metric will be used. |
projectId | path | string | true | the project to list models from |
Enumerated Values¶
Parameter | Value |
---|---|
isStarred | [false , False , true , True ] |
orderBy | [metric , -metric , samplePct , -samplePct ] |
Example responses¶
200 Response
[
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"ratingTableId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
]
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The response will include a json list of models in the same format as | |
those from GET /api/v2/projects/(projectId)/ratingTableModels/(modelId)/. | Inline |
Response Schema¶
Status Code 200
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | [RatingTableModelDetailsResponse] | false | none | |
» blueprintId | string | true | The blueprint used to construct the model. | |
» dataSelectionMethod | string | false | Identifies which setting defines the training size of the model when making predictions and scoring. Only used by datetime models. | |
» featurelistId | string¦null | true | The ID of the feature list used by the model. | |
» featurelistName | string¦null | true | The name of the feature list used by the model. If null, themodel was trained on multiple feature lists. | |
» hasFinetuners | boolean | false | Whether a model has fine tuners. | |
» id | string | true | The ID of the model. | |
» isAugmented | boolean | false | Whether a model was trained using augmentation. | |
» isFrozen | boolean | true | Indicates whether the model is frozen, i.e., uses tuning parameters from a parent model. | |
» isNClustersDynamicallyDetermined | boolean | false | Whether number of clusters is dynamically determined. Only valid in unsupervised clustering projects. | |
» isStarred | boolean | true | Indicates whether the model has been starred. | |
» isTrainedIntoHoldout | boolean | true | Indicates if model used holdout data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed validation size. | |
» isTrainedIntoValidation | boolean | true | Indicates if model used validation data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed training size. | |
» isTrainedOnGpu | boolean | true | Whether the model was trained using GPU workers. | |
» lifecycle | ModelLifecycle | true | Object returning model lifecycle. | |
»» reason | string¦null | true | Reason for lifecycle stage. None if model is active. | |
»» stage | string | true | Model lifecycle stage. | |
» linkFunction | string¦null | true | The link function the final modeler uses in the blueprint. If no link function exists, returns null. | |
» metrics | object | true | The performance of the model according to various metrics, where each metric has validation, crossValidation, holdout, and training scores reported, or null if they have not been computed. | |
» modelCategory | string | true | Indicates the type of model. Returns prime for DataRobot Prime models, blend for blender models, combined for combined models, and model for all other models. |
|
» modelFamily | string | true | the family model belongs to, e.g. SVM, GBM, etc. | |
» modelFamilyFullName | string | true | The full name of the family that the model belongs to. For e.g., Support Vector Machine, Gradient Boosting Machine, etc. | |
» modelNumber | integer¦null | true | minimum: 0 (exclusive) |
The model number from the Leaderboard. |
» modelType | string | true | Identifies the model (e.g.,Nystroem Kernel SVM Regressor ). |
|
» monotonicDecreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically decreasing relationship to the target. If null, no such constraints are enforced. | |
» monotonicIncreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically increasing relationship to the target. If null, no such constraints are enforced. | |
» nClusters | integer¦null | false | The number of clusters to use in the specified unsupervised clustering model. Only valid in unsupervised clustering projects. | |
» parentModelId | string¦null | true | The ID of the parent model if the model is frozen or a result of incremental learning. Null otherwise. | |
» predictionThreshold | number | true | maximum: 1 minimum: 0 |
threshold used for binary classification in predictions. |
» predictionThresholdReadOnly | boolean | true | indicates whether modification of a predictions threshold is forbidden. Since v2.22 threshold modification is allowed. | |
» processes | [string]¦null | true | maxItems: 100 |
The list of processes used by the model. |
» projectId | string | true | The ID of the project to which the model belongs. | |
» ratingTableId | string | true | The rating table ID | |
» samplePct | number¦null | true | minimum: 0 (exclusive) |
The percentage of the dataset used in training the model. |
» samplingMethod | string | false | indicates sampling method used to select training data in datetime models. For row-based project this is the way how requested number of rows are selected.For other projects (duration-based, start/end, project settings) - how specified percent of rows (timeWindowSamplePct) is selected from specified time window. | |
» supportsComposableMl | boolean | true | indicates whether this model is supported in Composable ML. | |
» supportsMonotonicConstraints | boolean | true | whether this model supports enforcing monotonic constraints | |
» timeWindowSamplePct | integer¦null | false | maximum: 100 (exclusive) minimum: 0 (exclusive) |
An integer between 1 and 99, indicating the percentage of sampling within the time window. The points kept are determined by samplingMethod option. Will be null if no sampling was specified. Only used by datetime models. |
» trainingDuration | string¦null | true | the duration spanned by the dates in the partition column for the data used to train the model | |
» trainingEndDate | string(date-time)¦null | true | the end date of the dates in the partition column for the data used to train the model | |
» trainingRowCount | integer¦null | true | minimum: 0 (exclusive) |
The number of rows used to train the model. |
» trainingStartDate | string(date-time)¦null | true | the start date of the dates in the partition column for the data used to train the model |
Enumerated Values¶
Property | Value |
---|---|
dataSelectionMethod | [duration , rowCount , selectedDateRange , useProjectSettings ] |
stage | [active , deprecated , disabled ] |
modelCategory | [model , prime , blend , combined , incrementalLearning ] |
samplingMethod | [random , latest ] |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/ratingTableModels/¶
Create a new rating table model from a validated rating table record
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/ratingTableModels/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"ratingTableId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project that owns this data |
body | body | CreateRatingTableModel | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | the request was understood and accepted, and is now being worked on | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | a url of an asynchronous operation status object that can be polled to check the status of the job validating the new rating table |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ratingTableModels/{modelId}/¶
Look up a particular rating table model
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ratingTableModels/{modelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project to retrieve the model from |
modelId | path | string | true | the model to retrieve |
Example responses¶
200 Response
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"ratingTableId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RatingTableModelDetailsResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ratingTables/¶
List RatingTable objects for a project. These contain metadata about the rating table and the location at which the corresponding rating table file can be retrieved.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ratingTables/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
parentModelId | query | string | false | optional. If specified, only rating tables with this parentModelId will be returned |
modelId | query | string | false | optional. If specified, only rating tables with this modelId will be returned |
offset | query | integer | false | optional (default: 0), this many results will be skipped |
limit | query | integer | false | optional (default: no limit), at most this many results are returned. To specify no limit, use 0. The default may change and a maximum limit may be imposed without notice. |
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"created": 0,
"id": "string",
"modelId": "string",
"modelJobId": 0,
"originalFilename": "string",
"parentModelId": "string",
"projectId": "string",
"ratingTableName": "string",
"validationError": "string",
"validationJobId": "string",
"validationWarnings": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RatingTableListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/ratingTables/¶
Create a new rating table from a rating table file This will create a new rating table, regardless of whether the validation succeeds. The rating table object will have a validationError which will be left blank in the case of successful validation.
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/ratingTables/ \
-H "Content-Type: multipart/form-data" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
parentModelId: string
ratingTableFile: string
ratingTableName: string
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project that owns this data |
body | body | UploadRatingTable | false | none |
Example responses¶
202 Response
{
"ratingTableId": "string",
"ratingTableName": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | the request was understood and accepted, and is now being worked on | RatingTableCreateResponse |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | a url of an asynchronous operation status object that can be polled to check the status of the job validating the new rating table |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ratingTables/{ratingTableId}/¶
Retrieves a rating table
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ratingTables/{ratingTableId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project that owns this data |
ratingTableId | path | string | true | the rating table ID to retrieve the source file from |
Example responses¶
200 Response
{
"created": 0,
"id": "string",
"modelId": "string",
"modelJobId": 0,
"originalFilename": "string",
"parentModelId": "string",
"projectId": "string",
"ratingTableName": "string",
"validationError": "string",
"validationJobId": "string",
"validationWarnings": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RatingTableRetrieveResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/projects/{projectId}/ratingTables/{ratingTableId}/¶
Rating tables may only be updated if they have not yet been used to create a model.
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/projects/{projectId}/ratingTables/{ratingTableId}/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"ratingTableName": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project that owns this data |
ratingTableId | path | string | true | the rating table ID to retrieve the source file from |
body | body | RatingTableUpdate | false | none |
Example responses¶
200 Response
{
"created": 0,
"id": "string",
"modelId": "string",
"modelJobId": 0,
"originalFilename": "string",
"parentModelId": "string",
"projectId": "string",
"ratingTableName": "string",
"validationError": "string",
"validationJobId": "string",
"validationWarnings": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | On success, will return the modified rating table record in the same | |
format as GET /api/v2/projects/(projectId)/ratingTables/(ratingTableId)/ | RatingTableRetrieveResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ratingTables/{ratingTableId}/file/¶
Retrieve the CSV file for the rating table
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ratingTables/{ratingTableId}/file/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project that owns this data |
ratingTableId | path | string | true | the rating table ID to retrieve the source file from |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The response will contain a file containing the rating table in csv format | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/recommendedModels/¶
Retrieves all of the current recommended models for the project
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/recommendedModels/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
Example responses¶
200 Response
[
{
"modelId": "string",
"recommendationType": "MOSTACCURATE"
}
]
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The list of recommended models | Inline |
Response Schema¶
Status Code 200
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | [RecommendedModelResponse] | false | none | |
» modelId | string | true | the ID of the recommended model | |
» recommendationType | string | true | the type of model recommendation |
Enumerated Values¶
Property | Value |
---|---|
recommendationType | [MOSTACCURATE , LIMITEDACCURATE , FASTACCURATE , RECOMMENDEDFORDEPLOYMENT , PREPAREDFORDEPLOYMENT ] |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/recommendedModels/recommendedModel/¶
This route returns the simplest recommended model available. To see all the available recommended models, use GET /api/v2/projects/{projectId}/recommendedModels/
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/recommendedModels/recommendedModel/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
Example responses¶
200 Response
{
"modelId": "string",
"recommendationType": "MOSTACCURATE"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The recommended model | RecommendedModelResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ruleFitFiles/¶
List all RuleFit code files available for download
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ruleFitFiles/?offset=0&limit=100 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
modelId | query | string | false | if specified only RuleFit code files with code used in the specified RuleFit model will be returned; otherwise all applicable RuleFit files will be returned |
offset | query | integer | true | This many files will be skipped. |
limit | query | integer | true | At most this many files are returned. |
projectId | path | string | true | the project to list available files for |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"id": "string",
"isValid": true,
"language": "Python",
"modelId": "string",
"projectId": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RuleFitCodeFileListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
POST /api/v2/projects/{projectId}/ruleFitFiles/¶
Request creation and validation of source code from a RuleFit model
Code samples¶
# You can also use wget
curl -X POST https://app.datarobot.com/api/v2/projects/{projectId}/ruleFitFiles/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"language": "Python",
"modelId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | the project the file belongs to |
body | body | RuleFitCodeFileCreate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
202 | Accepted | RuleFit code validation job added to queue. See the Location header. | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
202 | Location | string | url | a url that can be polled to check the status of RuleFit code validation job |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ruleFitFiles/{ruleFitFileId}/¶
Get information about a RuleFit code file available for download
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ruleFitFiles/{ruleFitFileId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
ruleFitFileId | path | string | true | the ID of the file |
projectId | path | string | true | the project to list available files for |
Example responses¶
200 Response
{
"id": "string",
"isValid": true,
"language": "Python",
"modelId": "string",
"projectId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RuleFitCodeFileResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/projects/{projectId}/ruleFitFiles/{ruleFitFileId}/download/¶
Download code from an existing RuleFit file
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/projects/{projectId}/ruleFitFiles/{ruleFitFileId}/download/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
ruleFitFileId | path | string | true | the ID of the file |
projectId | path | string | true | the project to list available files for |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The response will contain a file with the executable code from the RuleFit model | None |
Response Headers¶
Status | Header | Type | Format | Description |
---|---|---|---|---|
200 | Content-Disposition | string | Will be attachment;filename="<"filename">". The suggested filename will depend on the language RuleFit file was generated for. |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PUT /api/v2/projects/{projectId}/segmentChampion/¶
Update champion model for a segment project.
Code samples¶
# You can also use wget
curl -X PUT https://app.datarobot.com/api/v2/projects/{projectId}/segmentChampion/ \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"clone": false,
"modelId": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
projectId | path | string | true | The project ID |
body | body | SegmentChampionModelUpdate | false | none |
Example responses¶
200 Response
{
"combinedModelId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The ID of Combined model that has been updated with new segment champion model. | SegmentChampionModelUpdateResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/registeredModels/¶
List registered models.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/registeredModels/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | This many results will be skipped. |
limit | query | integer | false | At most this many results are returned. |
search | query | string | false | A term to search for in registered model name |
createdAtStartTs | query | string(date-time) | false | Registered models created on or after this timestamp |
createdAtEndTs | query | string(date-time) | false | Registered models created before this timestamp. Defaults to the current time |
modifiedAtStartTs | query | string(date-time) | false | Registered models modified on or after this timestamp |
modifiedAtEndTs | query | string(date-time) | false | Registered models modified before this timestamp. Defaults to the current time |
targetName | query | string | false | Name of the target to filter by |
targetType | query | string | false | Type of the target to filter by |
createdBy | query | string | false | Email of the user that created registered model to filter by |
sortKey | query | string | false | Key to order result by |
sortDirection | query | string | false | Sort direction |
compatibleWithLeaderboardModelId | query | string | false | If specified, limit results to registered models containing versions (model packages) for the leaderboard model with the specified ID. |
compatibleWithModelPackageId | query | string | false | Return registered models that have versions (model packages) compatible with given model package ID. If used, will only return registered models which have versions that match target.name , target.type , target.classNames (for classification models), modelKind.isTimeSeries , and modelKind.isMultiseries of the specified model package. |
forChallenger | query | boolean | false | Can be used with compatibleWithModelPackageId to request similar registered models that contain versions (model packages)that can be used as challenger models; for external model packages, instead of returning similar external model packages, similar DataRobot and Custom model packages will be retrieved. |
predictionThreshold | query | number | false | If specified, return any registered models containing one or more versions matching the prediction threshold used for binary classification models |
imported | query | boolean | false | If specified, return any registered models that contain either imported (true) or non-imported (false) versions (model packages) |
predictionEnvironmentId | query | string | false | Can be used to filter registered models by what is supported by the prediction environment |
modelKind | query | any | false | Return models that contain versions matching a specific format |
buildStatus | query | string | false | If specified, only return models that have versions with specified build status |
stage | query | string | false | If specified, only returns models that have versions in the specified stage. |
isGlobal | query | boolean | false | Return only global (accessible to all users in the organization) registered models or local(accessible only to the owner and the users with whom it has been explicitly shared) |
tagKeys | query | string | false | List of tag keys to filter by. |
tagValues | query | string | false | List of tag values to filter by. |
Enumerated Values¶
Parameter | Value |
---|---|
sortKey | [createdAt , modifiedAt , name ] |
sortDirection | [asc , desc ] |
buildStatus | [inProgress , complete , failed ] |
stage | [Registered , Development , Staging , Production , Archived ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"createdAt": "2019-08-24T14:15:22Z",
"createdBy": {
"email": "string",
"id": "string",
"name": "string"
},
"description": "string",
"id": "string",
"isArchived": true,
"isGlobal": true,
"lastVersionNum": 0,
"modifiedAt": "2019-08-24T14:15:22Z",
"modifiedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"name": "string",
"target": {
"name": "string",
"type": "string"
}
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RegisteredModelListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
DELETE /api/v2/registeredModels/{registeredModelId}/¶
Permanently archive a registered model and all of its versions
Code samples¶
# You can also use wget
curl -X DELETE https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/ \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
registeredModelId | path | string | true | ID of the registered model. |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | none | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/registeredModels/{registeredModelId}/¶
Retrieve info about a registered model.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
registeredModelId | path | string | true | ID of the registered model. |
Example responses¶
200 Response
{
"createdAt": "2019-08-24T14:15:22Z",
"createdBy": {
"email": "string",
"id": "string",
"name": "string"
},
"description": "string",
"id": "string",
"isArchived": true,
"isGlobal": true,
"lastVersionNum": 0,
"modifiedAt": "2019-08-24T14:15:22Z",
"modifiedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"name": "string",
"target": {
"name": "string",
"type": "string"
}
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RegisteredModelResponse |
404 | Not Found | The registered model does not exist or the user does not have permission to view the model package. | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/registeredModels/{registeredModelId}/¶
Update registered model
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"description": "string",
"isGlobal": true,
"name": "string"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
registeredModelId | path | string | true | ID of the registered model. |
body | body | RegisteredModelUpdate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | None |
422 | Unprocessable Entity | Unable to process the Registered Model update request | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/registeredModels/{registeredModelId}/deployments/¶
List deployments associated with the given registered model
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/deployments/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | This many results will be skipped. |
limit | query | integer | false | At most this many results are returned. |
search | query | string | false | Filter deployments with name matching search term |
sortKey | query | string | false | Key to order result by |
sortDirection | query | string | false | Sort direction |
registeredModelId | path | string | true | ID of the registered model. |
Enumerated Values¶
Parameter | Value |
---|---|
sortKey | [createdAt , label ] |
sortDirection | [asc , desc ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"createdAt": "string",
"createdBy": {
"email": "string",
"id": "string",
"name": "string"
},
"currentlyDeployed": true,
"firstDeployedAt": "string",
"firstDeployedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"id": "string",
"isChallenger": true,
"label": "string",
"predictionEnvironment": {
"id": "string",
"isManagedByManagementAgent": true,
"name": "string",
"platform": "aws",
"plugin": "string",
"supportedModelFormats": [
"datarobot"
]
},
"registeredModelVersion": 0,
"status": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RegisteredModelDeploymentsListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/registeredModels/{registeredModelId}/sharedRoles/¶
Get a list of users, groups and organizations who have access to this registered model and their roles on the registered model.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/sharedRoles/?offset=0&limit=10 \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
id | query | string | false | Only return roles for a user, group or organization with this identifier. |
offset | query | integer | true | This many results will be skipped |
limit | query | integer | true | At most this many results are returned |
name | query | string | false | Only return roles for a user, group or organization with this name. |
shareRecipientType | query | string | false | List access controls for recipients with this type. |
registeredModelId | path | string | true | ID of the registered model. |
Enumerated Values¶
Parameter | Value |
---|---|
shareRecipientType | [user , group , organization ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"id": "string",
"name": "string",
"role": "ADMIN",
"shareRecipientType": "user"
}
],
"next": "string",
"previous": "string",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | The registered model's access control list. | SharingListV2Response |
404 | Not Found | Either the Registered Model does not exist or the user does not have permissions to view the Registered Model. | None |
422 | Unprocessable Entity | Both username and userId were specified | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
PATCH /api/v2/registeredModels/{registeredModelId}/sharedRoles/¶
Set roles for users on this registered model.
Code samples¶
# You can also use wget
curl -X PATCH https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/sharedRoles/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer {access-token}"
Body parameter¶
{
"operation": "updateRoles",
"roles": [
{
"role": "string",
"shareRecipientType": "user",
"username": "string"
}
]
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
registeredModelId | path | string | true | ID of the registered model. |
body | body | SharedRolesUpdate | false | none |
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
204 | No Content | Roles updated successfully. | None |
409 | Conflict | The request would leave the registered model without an owner. | None |
422 | Unprocessable Entity | One of the users in the request does not exist, or the request is otherwise invalid | None |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/registeredModels/{registeredModelId}/versions/¶
List registered model's versions.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/versions/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | This many results will be skipped. |
limit | query | integer | false | At most this many results are returned. |
sortKey | query | string | false | Key to order result by |
sortDirection | query | string | false | Sort direction |
targetName | query | string | false | Name of the target to filter by |
targetType | query | string | false | Type of the target to filter by |
search | query | string | false | A term to search for in version name, model name, or description |
compatibleWithLeaderboardModelId | query | string | false | If specified, limit results to versions (model packages) of the leaderboard model with the specified ID. |
compatibleWithModelPackageId | query | string | false | Return versions compatible with given model package ID. If used, will only return versions that match target.name , target.type , target.classNames (for classification models), modelKind.isTimeSeries , and modelKind.isMultiseries of the specified model package |
forChallenger | query | boolean | false | Can be used with compatibleWithModelPackageId to request similar versions that can be used as challenger models; for external model packages, instead of returning similar external model packages, similar DataRobot and Custom model packages will be retrieved |
predictionThreshold | query | number | false | Return versions with the specified prediction threshold used for binary classification models |
imported | query | boolean | false | If specified, return either imported (true) or non-imported (false) versions (model packages) |
predictionEnvironmentId | query | string | false | Can be used to filter versions (model packages) by what is supported by the prediction environment |
modelKind | query | any | false | Return versions that match a specific format. |
buildStatus | query | string | false | If specified, filter versions by the build status. |
stage | query | string | false | If specified, filter versions by the stage. |
useCaseId | query | string | false | If specified, filter versions by use-case id. |
createdBy | query | string | false | Email of the user that created registered model version to filter by |
registeredModelId | path | string | true | ID of the registered model. |
Enumerated Values¶
Parameter | Value |
---|---|
sortKey | [version , modelType , status , createdAt , updatedAt ] |
sortDirection | [asc , desc ] |
buildStatus | [inProgress , complete , failed ] |
stage | [Registered , Development , Staging , Production , Archived ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"activeDeploymentCount": 0,
"buildStatus": "inProgress",
"capabilities": {
"supportsAutomaticActuals": true,
"supportsChallengerModels": true,
"supportsFeatureDriftTracking": true,
"supportsHumilityRecommendedRules": true,
"supportsHumilityRules": true,
"supportsHumilityRulesDefaultCalculations": true,
"supportsPredictionWarning": true,
"supportsRetraining": true,
"supportsScoringCodeDownload": true,
"supportsSecondaryDatasets": true,
"supportsSegmentedAnalysisDriftAndAccuracy": true,
"supportsShapBasedPredictionExplanations": true,
"supportsTargetDriftTracking": true
},
"datasets": {
"baselineSegmentedBy": [
"string"
],
"datasetName": "string",
"holdoutDataCatalogId": "string",
"holdoutDataCatalogVersionId": "string",
"holdoutDataCreatedAt": "string",
"holdoutDataCreatorEmail": "string",
"holdoutDataCreatorId": null,
"holdoutDataCreatorName": "string",
"holdoutDatasetName": "string",
"targetHistogramBaseline": "predictions",
"trainingDataCatalogId": "string",
"trainingDataCatalogVersionId": "string",
"trainingDataCreatedAt": "string",
"trainingDataCreatorEmail": "string",
"trainingDataCreatorId": null,
"trainingDataCreatorName": "string",
"trainingDataSize": 0
},
"id": "string",
"importMeta": {
"containsFearPipeline": true,
"containsFeaturelists": true,
"containsLeaderboardMeta": true,
"containsProjectMeta": true,
"creatorFullName": "string",
"creatorId": "string",
"creatorUsername": "string",
"dateCreated": "string",
"originalFileName": "string"
},
"isArchived": true,
"isDeprecated": true,
"mlpkgFileContents": {
"allTimeSeriesPredictionIntervals": true
},
"modelDescription": {
"buildEnvironmentType": "DataRobot",
"description": "string",
"location": "string",
"modelCreatedAt": "string",
"modelCreatorEmail": "string",
"modelCreatorId": null,
"modelCreatorName": "string",
"modelName": "string"
},
"modelExecutionType": "dedicated",
"modelId": "string",
"modelKind": {
"isAnomalyDetectionModel": true,
"isCombinedModel": true,
"isFeatureDiscovery": true,
"isMultiseries": true,
"isTimeSeries": true,
"isUnsupervisedLearning": true
},
"name": "string",
"permissions": [
"string"
],
"sourceMeta": {
"customModelDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"versionLabel": "string"
},
"environmentUrl": "http://example.com",
"fips_140_2Enabled": true,
"projectCreatedAt": "string",
"projectCreatorEmail": "string",
"projectCreatorId": null,
"projectCreatorName": "string",
"projectId": "string",
"projectName": "string",
"scoringCode": {
"dataRobotPredictionVersion": "string",
"location": "local_leaderboard"
},
"useCaseDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"name": "string"
}
},
"target": {
"classCount": 0,
"classNames": [
"string"
],
"name": "string",
"predictionProbabilitiesColumn": "string",
"predictionThreshold": 1,
"type": "Binary"
},
"timeseries": {
"datetimeColumnFormat": "string",
"datetimeColumnName": "string",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featureDerivationWindowEnd": 0,
"featureDerivationWindowStart": 0,
"forecastDistanceColumnName": "string",
"forecastDistances": [
0
],
"forecastDistancesTimeUnit": "MICROSECOND",
"forecastPointColumnName": "string",
"isCrossSeries": true,
"isNewSeriesSupport": true,
"isTraditionalTimeSeries": true,
"seriesColumnName": "string"
},
"updatedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"userProvidedId": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RegisteredModelVersionsListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/registeredModels/{registeredModelId}/versions/{versionId}/¶
Get a registered model's version.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/versions/{versionId}/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
registeredModelId | path | string | true | ID of the registered model. |
versionId | path | string | true | ID of the registered model's version. |
Example responses¶
200 Response
{
"activeDeploymentCount": 0,
"buildStatus": "inProgress",
"capabilities": {
"supportsAutomaticActuals": true,
"supportsChallengerModels": true,
"supportsFeatureDriftTracking": true,
"supportsHumilityRecommendedRules": true,
"supportsHumilityRules": true,
"supportsHumilityRulesDefaultCalculations": true,
"supportsPredictionWarning": true,
"supportsRetraining": true,
"supportsScoringCodeDownload": true,
"supportsSecondaryDatasets": true,
"supportsSegmentedAnalysisDriftAndAccuracy": true,
"supportsShapBasedPredictionExplanations": true,
"supportsTargetDriftTracking": true
},
"datasets": {
"baselineSegmentedBy": [
"string"
],
"datasetName": "string",
"holdoutDataCatalogId": "string",
"holdoutDataCatalogVersionId": "string",
"holdoutDataCreatedAt": "string",
"holdoutDataCreatorEmail": "string",
"holdoutDataCreatorId": null,
"holdoutDataCreatorName": "string",
"holdoutDatasetName": "string",
"targetHistogramBaseline": "predictions",
"trainingDataCatalogId": "string",
"trainingDataCatalogVersionId": "string",
"trainingDataCreatedAt": "string",
"trainingDataCreatorEmail": "string",
"trainingDataCreatorId": null,
"trainingDataCreatorName": "string",
"trainingDataSize": 0
},
"id": "string",
"importMeta": {
"containsFearPipeline": true,
"containsFeaturelists": true,
"containsLeaderboardMeta": true,
"containsProjectMeta": true,
"creatorFullName": "string",
"creatorId": "string",
"creatorUsername": "string",
"dateCreated": "string",
"originalFileName": "string"
},
"isArchived": true,
"isDeprecated": true,
"mlpkgFileContents": {
"allTimeSeriesPredictionIntervals": true
},
"modelDescription": {
"buildEnvironmentType": "DataRobot",
"description": "string",
"location": "string",
"modelCreatedAt": "string",
"modelCreatorEmail": "string",
"modelCreatorId": null,
"modelCreatorName": "string",
"modelName": "string"
},
"modelExecutionType": "dedicated",
"modelId": "string",
"modelKind": {
"isAnomalyDetectionModel": true,
"isCombinedModel": true,
"isFeatureDiscovery": true,
"isMultiseries": true,
"isTimeSeries": true,
"isUnsupervisedLearning": true
},
"name": "string",
"permissions": [
"string"
],
"sourceMeta": {
"customModelDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"versionLabel": "string"
},
"environmentUrl": "http://example.com",
"fips_140_2Enabled": true,
"projectCreatedAt": "string",
"projectCreatorEmail": "string",
"projectCreatorId": null,
"projectCreatorName": "string",
"projectId": "string",
"projectName": "string",
"scoringCode": {
"dataRobotPredictionVersion": "string",
"location": "local_leaderboard"
},
"useCaseDetails": {
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"name": "string"
}
},
"target": {
"classCount": 0,
"classNames": [
"string"
],
"name": "string",
"predictionProbabilitiesColumn": "string",
"predictionThreshold": 1,
"type": "Binary"
},
"timeseries": {
"datetimeColumnFormat": "string",
"datetimeColumnName": "string",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featureDerivationWindowEnd": 0,
"featureDerivationWindowStart": 0,
"forecastDistanceColumnName": "string",
"forecastDistances": [
0
],
"forecastDistancesTimeUnit": "MICROSECOND",
"forecastPointColumnName": "string",
"isCrossSeries": true,
"isNewSeriesSupport": true,
"isTraditionalTimeSeries": true,
"seriesColumnName": "string"
},
"updatedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"userProvidedId": "string"
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | ModelPackageRetrieveResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
GET /api/v2/registeredModels/{registeredModelId}/versions/{versionId}/deployments/¶
List all deployments associated with registered model version.
Code samples¶
# You can also use wget
curl -X GET https://app.datarobot.com/api/v2/registeredModels/{registeredModelId}/versions/{versionId}/deployments/ \
-H "Accept: application/json" \
-H "Authorization: Bearer {access-token}"
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
offset | query | integer | false | This many results will be skipped. |
limit | query | integer | false | At most this many results are returned. |
search | query | string | false | Filter deployments with name matching search term |
sortKey | query | string | false | Key to order result by |
sortDirection | query | string | false | Sort direction |
registeredModelId | path | string | true | ID of the registered model. |
versionId | path | string | true | ID of the registered model's version. |
Enumerated Values¶
Parameter | Value |
---|---|
sortKey | [createdAt , label ] |
sortDirection | [asc , desc ] |
Example responses¶
200 Response
{
"count": 0,
"data": [
{
"createdAt": "string",
"createdBy": {
"email": "string",
"id": "string",
"name": "string"
},
"currentlyDeployed": true,
"firstDeployedAt": "string",
"firstDeployedBy": {
"email": "string",
"id": "string",
"name": "string"
},
"id": "string",
"isChallenger": true,
"label": "string",
"predictionEnvironment": {
"id": "string",
"isManagedByManagementAgent": true,
"name": "string",
"platform": "aws",
"plugin": "string",
"supportedModelFormats": [
"datarobot"
]
},
"registeredModelVersion": 0,
"status": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Responses¶
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | none | RegisteredModelDeploymentsListResponse |
To perform this operation, you must be authenticated by means of one of the following methods:
BearerAuth
Schemas¶
AccessControl
{
"canShare": true,
"role": "string",
"userId": "string",
"username": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
canShare | boolean | true | Whether the recipient can share the role further. | |
role | string | true | The role of the user on this entity. | |
userId | string | true | The identifier of the user that has access to this entity. | |
username | string | true | The username of the user that has access to the entity. |
AccessControlV2
{
"id": "string",
"name": "string",
"role": "ADMIN",
"shareRecipientType": "user"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
id | string | true | The identifier of the recipient. | |
name | string | true | The name of the recipient. | |
role | string | true | The role of the recipient on this entity. | |
shareRecipientType | string | true | The type of the recipient. |
Enumerated Values¶
Property | Value |
---|---|
role | [ADMIN , CONSUMER , DATA_SCIENTIST , EDITOR , OBSERVER , OWNER , READ_ONLY , READ_WRITE , USER ] |
shareRecipientType | [user , group , organization ] |
AdvancedTuningArgumentsRetrieveResponse
{
"tuningDescription": "string",
"tuningParameters": [
{
"constraints": {
"ascii": {
"supportsGridSearch": true
},
"float": {
"max": 0,
"min": 0,
"supportsGridSearch": true
},
"floatList": {
"maxLength": 0,
"maxVal": 0,
"minLength": 0,
"minVal": 0,
"supportsGridSearch": true
},
"int": {
"max": 0,
"min": 0,
"supportsGridSearch": true
},
"intList": {
"maxLength": 0,
"maxVal": 0,
"minLength": 0,
"minVal": 0,
"supportsGridSearch": true
},
"select": {
"supportsGridSearch": true,
"values": [
"string"
]
},
"selectgrid": {
"supportsGridSearch": true,
"values": [
"string"
]
},
"unicode": {
"supportsGridSearch": true
}
},
"currentValue": "string",
"defaultValue": "string",
"parameterId": "string",
"parameterName": "string",
"taskName": "string",
"vertexId": "string"
}
]
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
tuningDescription | string¦null | true | Human-readable description of the tuned model, if specified by the user. null if unspecified. |
|
tuningParameters | [TuningParameters] | true | An array of objects containing information about tuning parameters that are supported by the specified model. |
BacktestStatusResponse
{
"index": 0,
"score": 0,
"status": "COMPLETED",
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
index | integer | true | the index of the fold | |
score | number¦null | true | the score of the model for this backtesting fold, if computed | |
status | string | true | the status of the current backtest model job | |
trainingDuration | string(duration) | true | the duration of the data used to train the model for this backtesting fold | |
trainingEndDate | string(date-time) | true | the end date of the training for this backtesting fold | |
trainingRowCount | integer | true | the number of rows used to train the model for this backtesting fold | |
trainingStartDate | string(date-time) | true | the start date of the training for this backtesting fold |
Enumerated Values¶
Property | Value |
---|---|
status | [COMPLETED , NOT_COMPLETED , INSUFFICIENT_DATA , ERRORED , BACKTEST_BOUNDARIES_EXCEEDED ] |
BaseConstraintType
{
"supportsGridSearch": true
}
Indicates that the value can contain free-form ASCII text. If present, is an empty object. Note that ascii
fields must be valid ASCII-encoded strings. Additionally, they may not contain semicolons or newlines.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
supportsGridSearch | boolean | true | When True, Grid Search is supported for this parameter. |
BaseDependencyBuildMetadataResponse
{
"buildEnd": "string",
"buildLogLocation": "http://example.com",
"buildStart": "string",
"buildStatus": "submitted"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
buildEnd | string¦null | true | The ISO-8601 encoded time when this build completed. | |
buildLogLocation | string(uri)¦null | true | The URL to download the build logs from this build. | |
buildStart | string | true | The ISO-8601 encoded time when this build started. | |
buildStatus | string | true | The current status of the dependency build. |
Enumerated Values¶
Property | Value |
---|---|
buildStatus | [submitted , processing , failed , success ] |
BiasMitigatedModelsDataResponse
{
"biasMitigationTechnique": "preprocessingReweighing",
"includeBiasMitigationFeatureAsPredictorVariable": true,
"modelId": "string",
"parentModelId": "string",
"protectedFeature": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
biasMitigationTechnique | string | true | Method applied to perform bias mitigation. | |
includeBiasMitigationFeatureAsPredictorVariable | boolean | true | Specifies whether the mitigation feature will be used as a predictor variable (i.e., treated like other categorical features in the input to train the modeler), in addition to being used for bias mitigation. If false, the mitigation feature will be used only for bias mitigation, and not for training the modeler task. | |
modelId | string | true | Mitigated model ID | |
parentModelId | string¦null | true | Parent model ID | |
protectedFeature | string | true | Protected feature that will be used in a bias mitigation task to mitigate bias |
Enumerated Values¶
Property | Value |
---|---|
biasMitigationTechnique | [preprocessingReweighing , postProcessingRejectionOptionBasedClassification ] |
BiasMitigatedModelsListResponse
{
"count": 0,
"data": [
{
"biasMitigationTechnique": "preprocessingReweighing",
"includeBiasMitigationFeatureAsPredictorVariable": true,
"modelId": "string",
"parentModelId": "string",
"protectedFeature": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | false | Number of items returned on this page. | |
data | [BiasMitigatedModelsDataResponse] | true | Retrieve list of mitigated models for project. | |
next | string(uri)¦null | true | URL pointing to the next page (if null, there is no next page). | |
previous | string(uri)¦null | true | URL pointing to the previous page (if null, there is no previous page). | |
totalCount | integer | true | The total number of items across all pages. |
BiasMitigationModelCreate
{
"biasMitigationFeature": "string",
"biasMitigationParentLid": "string",
"biasMitigationTechnique": "preprocessingReweighing",
"includeBiasMitigationFeatureAsPredictorVariable": true
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
biasMitigationFeature | string | true | minLength: 1 minLength: 1 |
The name of the protected feature used to mitigate bias on models. |
biasMitigationParentLid | string | true | The ID of the model to modify with a bias-mitigation task. | |
biasMitigationTechnique | string | true | Method applied to perform bias mitigation. | |
includeBiasMitigationFeatureAsPredictorVariable | boolean | true | Specifies whether the mitigation feature will be used as a predictor variable (i.e., treated like other categorical features in the input to train the modeler), in addition to being used for bias mitigation. If false, the mitigation feature will be used only for bias mitigation, and not for training the modeler task. |
Enumerated Values¶
Property | Value |
---|---|
biasMitigationTechnique | [preprocessingReweighing , postProcessingRejectionOptionBasedClassification ] |
BlenderCreate
{
"blenderMethod": "PLS",
"modelIds": [
"string"
]
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
blenderMethod | string | true | The blender method, one of "PLS", "GLM", "AVG", "ENET", "MED", "MAE", "MAEL1", "TF", "RF", "LGBM", "FORECAST_DISTANCE_ENET" (new in v2.18), "FORECAST_DISTANCE_AVG" (new in v2.18), "MIN", "MAX". | |
modelIds | [string] | true | minItems: 1 |
The list of models to use in blender. |
Enumerated Values¶
Property | Value |
---|---|
blenderMethod | [PLS , GLM , ENET , AVG , MED , MAE , MAEL1 , FORECAST_DISTANCE_AVG , FORECAST_DISTANCE_ENET , MAX , MIN ] |
BlenderInfoRetrieveResponse
{
"blendable": true,
"reason": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
blendable | boolean | true | If True, the models can be blended. | |
reason | string | true | Useful info as to why a model can't be blended. |
BlenderListResponse
{
"count": 0,
"data": [
{
"blenderMethod": "string",
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelIds": [
"string"
],
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | true | Number of items returned on this page. | |
data | [BlenderRetrieveResponse] | true | Each has the same schema as if retrieving the model individually from GET /api/v2/projects/{projectId}/blenderModels/{modelId}/. | |
next | string(uri)¦null | true | URL pointing to the next page (if null, there is no next page). | |
previous | string(uri)¦null | true | URL pointing to the previous page (if null, there is no previous page). |
BlenderRetrieveResponse
{
"blenderMethod": "string",
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"hasFinetuners": true,
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelIds": [
"string"
],
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
blenderMethod | string | true | Method used to blend results of underlying models. | |
blueprintId | string | true | The blueprint used to construct the model. | |
dataSelectionMethod | string | false | Identifies which setting defines the training size of the model when making predictions and scoring. Only used by datetime models. | |
featurelistId | string¦null | true | The ID of the feature list used by the model. | |
featurelistName | string¦null | true | The name of the feature list used by the model. If null, themodel was trained on multiple feature lists. | |
hasFinetuners | boolean | false | Whether a model has fine tuners. | |
id | string | true | The ID of the model. | |
isAugmented | boolean | false | Whether a model was trained using augmentation. | |
isFrozen | boolean | true | Indicates whether the model is frozen, i.e., uses tuning parameters from a parent model. | |
isNClustersDynamicallyDetermined | boolean | false | Whether number of clusters is dynamically determined. Only valid in unsupervised clustering projects. | |
isStarred | boolean | true | Indicates whether the model has been starred. | |
isTrainedIntoHoldout | boolean | true | Indicates if model used holdout data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed validation size. | |
isTrainedIntoValidation | boolean | true | Indicates if model used validation data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed training size. | |
isTrainedOnGpu | boolean | true | Whether the model was trained using GPU workers. | |
lifecycle | ModelLifecycle | true | Object returning model lifecycle. | |
linkFunction | string¦null | true | The link function the final modeler uses in the blueprint. If no link function exists, returns null. | |
metrics | object | true | The performance of the model according to various metrics, where each metric has validation, crossValidation, holdout, and training scores reported, or null if they have not been computed. | |
modelCategory | string | true | Indicates the type of model. Returns prime for DataRobot Prime models, blend for blender models, combined for combined models, and model for all other models. |
|
modelFamily | string | true | the family model belongs to, e.g. SVM, GBM, etc. | |
modelFamilyFullName | string | true | The full name of the family that the model belongs to. For e.g., Support Vector Machine, Gradient Boosting Machine, etc. | |
modelIds | [string] | true | List of models used in blender. | |
modelNumber | integer¦null | true | minimum: 0 (exclusive) |
The model number from the Leaderboard. |
modelType | string | true | Identifies the model (e.g.,Nystroem Kernel SVM Regressor ). |
|
monotonicDecreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically decreasing relationship to the target. If null, no such constraints are enforced. | |
monotonicIncreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically increasing relationship to the target. If null, no such constraints are enforced. | |
nClusters | integer¦null | false | The number of clusters to use in the specified unsupervised clustering model. Only valid in unsupervised clustering projects. | |
parentModelId | string¦null | true | The ID of the parent model if the model is frozen or a result of incremental learning. Null otherwise. | |
predictionThreshold | number | true | maximum: 1 minimum: 0 |
threshold used for binary classification in predictions. |
predictionThresholdReadOnly | boolean | true | indicates whether modification of a predictions threshold is forbidden. Since v2.22 threshold modification is allowed. | |
processes | [string]¦null | true | maxItems: 100 |
The list of processes used by the model. |
projectId | string | true | The ID of the project to which the model belongs. | |
samplePct | number¦null | true | minimum: 0 (exclusive) |
The percentage of the dataset used in training the model. |
samplingMethod | string | false | indicates sampling method used to select training data in datetime models. For row-based project this is the way how requested number of rows are selected.For other projects (duration-based, start/end, project settings) - how specified percent of rows (timeWindowSamplePct) is selected from specified time window. | |
supportsComposableMl | boolean | true | indicates whether this model is supported in Composable ML. | |
supportsMonotonicConstraints | boolean | true | whether this model supports enforcing monotonic constraints | |
timeWindowSamplePct | integer¦null | false | maximum: 100 (exclusive) minimum: 0 (exclusive) |
An integer between 1 and 99, indicating the percentage of sampling within the time window. The points kept are determined by samplingMethod option. Will be null if no sampling was specified. Only used by datetime models. |
trainingDuration | string¦null | true | the duration spanned by the dates in the partition column for the data used to train the model | |
trainingEndDate | string(date-time)¦null | true | the end date of the dates in the partition column for the data used to train the model | |
trainingRowCount | integer¦null | true | minimum: 0 (exclusive) |
The number of rows used to train the model. |
trainingStartDate | string(date-time)¦null | true | the start date of the dates in the partition column for the data used to train the model |
Enumerated Values¶
Property | Value |
---|---|
dataSelectionMethod | [duration , rowCount , selectedDateRange , useProjectSettings ] |
modelCategory | [model , prime , blend , combined , incrementalLearning ] |
samplingMethod | [random , latest ] |
ClassificationBinDataResponse
{
"binEnd": 0,
"binStart": 0,
"negatives": 0,
"positives": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
binEnd | number | true | The end of the numeric range for the current bin. Note that binEnd - binStart should be a constant, modulo floating-point rounding error, for all bins in a single plot. |
|
binStart | number | true | The start of the numeric range for the current bin. Must be equal to the binEnd of the previous bin. |
|
negatives | integer | true | The number of records in the dataset where the model's predicted value falls into this bin and the target is negative. | |
positives | integer | true | The number of records in the dataset where the model's predicted value falls into this bin and the target is positive. |
ClusterInfoList
{
"name": "string",
"percent": 100
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
name | string | true | maxLength: 50 minLength: 1 minLength: 1 |
A cluster name. |
percent | number | false | maximum: 100 minimum: 0 |
The percentage of rows in the dataset this cluster contains. |
ClusterNamesMappingValidation
{
"currentName": "string",
"newName": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
currentName | string | true | maxLength: 50 minLength: 1 minLength: 1 |
Current cluster name. |
newName | string | true | maxLength: 50 minLength: 1 minLength: 1 |
New cluster name. |
ClusterNamesResponse
{
"clusters": [
{
"name": "string",
"percent": 100
},
{
"name": "string",
"percent": 100
}
],
"modelId": "string",
"projectId": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
clusters | [ClusterInfoList] | true | maxItems: 100 minItems: 2 |
A list of the model's cluster information entries. |
modelId | string | true | The model ID | |
projectId | string | true | The project ID |
ClusterNamesUpdateParam
{
"clusterNameMappings": [
{
"currentName": "string",
"newName": "string"
}
]
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
clusterNameMappings | [ClusterNamesMappingValidation] | true | maxItems: 100 |
A list of the mappings from a cluster's current name to its new name. After update, value passed as a new name will become cluster's current name. All cluster names should be unique and should identify one and only one cluster. |
CombinedModelListResponse
{
"count": 0,
"data": [
{
"combinedModelId": "string",
"isActiveCombinedModel": false,
"modelCategory": "combined",
"projectId": "string",
"segmentationTaskId": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | false | Number of items returned on this page. | |
data | [CommonGetAndListCombinedModel] | true | List of combined models. | |
next | string(uri)¦null | true | URL pointing to the next page (if null, there is no next page). | |
previous | string(uri)¦null | true | URL pointing to the previous page (if null, there is no previous page). | |
totalCount | integer | true | The total number of items across all pages. |
CombinedModelResponse
{
"combinedModelId": "string",
"isActiveCombinedModel": false,
"modelCategory": "combined",
"projectId": "string",
"segmentationTaskId": "string",
"segments": [
{
"modelId": "string",
"projectId": "string",
"segment": "string"
}
]
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
combinedModelId | string | true | The ID of combined model. | |
isActiveCombinedModel | boolean | true | Indicates whether this model is the active one in segmented modeling project. | |
modelCategory | string | true | Indicates what kind of model this is. Will be combined for combined models. |
|
projectId | string | true | The ID of the project. | |
segmentationTaskId | string | true | The ID of the segmentation task used to generate this combined model. | |
segments | [SegmentProjectModelResponse] | true | Information for each segment. Maps each segment to the project and model used for it. |
Enumerated Values¶
Property | Value |
---|---|
modelCategory | combined |
CombinedModelSegmentsPaginatedResponse
{
"count": 0,
"data": [
{
"autopilotDone": true,
"holdoutUnlocked": true,
"isFrozen": true,
"modelAssignedBy": "string",
"modelAwardTime": "2019-08-24T14:15:22Z",
"modelCount": 0,
"modelIcon": [
0
],
"modelId": "string",
"modelMetrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelType": "string",
"projectId": "string",
"projectPaused": true,
"projectStage": "modeling",
"projectStageDescription": "string",
"projectStatusError": "string",
"rowCount": 0,
"rowPercentage": 0,
"segment": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | false | Number of items returned on this page. | |
data | [CombinedModelSegmentsResponse] | true | List of combined model segments info. | |
next | string(uri)¦null | true | URL pointing to the next page (if null, there is no next page). | |
previous | string(uri)¦null | true | URL pointing to the previous page (if null, there is no previous page). | |
totalCount | integer | true | The total number of items across all pages. |
CombinedModelSegmentsResponse
{
"autopilotDone": true,
"holdoutUnlocked": true,
"isFrozen": true,
"modelAssignedBy": "string",
"modelAwardTime": "2019-08-24T14:15:22Z",
"modelCount": 0,
"modelIcon": [
0
],
"modelId": "string",
"modelMetrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelType": "string",
"projectId": "string",
"projectPaused": true,
"projectStage": "modeling",
"projectStageDescription": "string",
"projectStatusError": "string",
"rowCount": 0,
"rowPercentage": 0,
"segment": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
autopilotDone | boolean¦null | true | Is autopilot done for the project. | |
holdoutUnlocked | boolean¦null | true | Is holdout unlocked for the project. | |
isFrozen | boolean¦null | true | Indicates whether the segment champion model is frozen, i.e. uses tuning parameters from a parent model | |
modelAssignedBy | string¦null | true | Who assigned model as segment champion. Default is DataRobot . |
|
modelAwardTime | string(date-time)¦null | true | Time when model was awarded as segment champion. | |
modelCount | integer¦null | true | Count of trained models in project. | |
modelIcon | [integer]¦null | true | The number for the icon representing the given champion model. | |
modelId | string¦null | true | ID of segment champion model. | |
modelMetrics | object¦null | true | The performance of the model according to various metrics, where each metric has validation, crossValidation, holdout, and training scores reported, or null if they have not been computed. |
|
modelType | string¦null | true | The description of the model type of the given champion model. | |
projectId | string¦null | true | The ID of the project. | |
projectPaused | boolean¦null | false | Is project paused right now. | |
projectStage | string¦null | true | The current stage of the project, where modeling indicates that the target has been successfully set and modeling and predictions may proceed. | |
projectStageDescription | string¦null | true | A description of the current stage of the project. | |
projectStatusError | string¦null | false | Project status error message. | |
rowCount | integer¦null | true | Count of rows in project's dataset. | |
rowPercentage | number¦null | true | Percentage of rows in segment project's dataset comparing to original dataset. | |
segment | string | true | Segment name. |
Enumerated Values¶
Property | Value |
---|---|
projectStage | [modeling , aim , fasteda , eda , eda2 , empty ] |
CommonGetAndListCombinedModel
{
"combinedModelId": "string",
"isActiveCombinedModel": false,
"modelCategory": "combined",
"projectId": "string",
"segmentationTaskId": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
combinedModelId | string | true | The ID of combined model. | |
isActiveCombinedModel | boolean | true | Indicates whether this model is the active one in segmented modeling project. | |
modelCategory | string | true | Indicates what kind of model this is. Will be combined for combined models. |
|
projectId | string | true | The ID of the project. | |
segmentationTaskId | string | true | The ID of the segmentation task used to generate this combined model. |
Enumerated Values¶
Property | Value |
---|---|
modelCategory | combined |
Constraints
{
"ascii": {
"supportsGridSearch": true
},
"float": {
"max": 0,
"min": 0,
"supportsGridSearch": true
},
"floatList": {
"maxLength": 0,
"maxVal": 0,
"minLength": 0,
"minVal": 0,
"supportsGridSearch": true
},
"int": {
"max": 0,
"min": 0,
"supportsGridSearch": true
},
"intList": {
"maxLength": 0,
"maxVal": 0,
"minLength": 0,
"minVal": 0,
"supportsGridSearch": true
},
"select": {
"supportsGridSearch": true,
"values": [
"string"
]
},
"selectgrid": {
"supportsGridSearch": true,
"values": [
"string"
]
},
"unicode": {
"supportsGridSearch": true
}
}
Constraints on valid values for this parameter. Note that any of these fields may be omitted but at least one will always be present. The presence of a field indicates that the parameter in question will accept values in the corresponding format.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ascii | BaseConstraintType | false | Indicates that the value can contain free-form ASCII text. If present, is an empty object. Note that ascii fields must be valid ASCII-encoded strings. Additionally, they may not contain semicolons or newlines. |
|
float | Float | false | Numeric constraints on a floating-point value. If present, indicates that this parameter's value may be a JSON number (integer or floating point). | |
floatList | FloatList | false | Numeric constraints on a value of an array of floating-point numbers. If present, indicates that this parameter's value may be a JSON array of numbers (integer or floating point). | |
int | Int | false | Numeric constraints on an integer value. If present, indicates that this parameter's value may be a JSON integer. | |
intList | IntList | false | Numeric constraints on a value of an array of floating-point numbers. If present, indicates that this parameter's value may be a JSON array of integers. | |
select | Select | false | Indicates that the value can be one selected from a list of known values. | |
selectgrid | Select | false | Indicates that the value can be one selected from a list of known values. | |
unicode | BaseConstraintType | false | Indicates that the value can contain free-form ASCII text. If present, is an empty object. Note that ascii fields must be valid ASCII-encoded strings. Additionally, they may not contain semicolons or newlines. |
CreateRatingTableModel
{
"ratingTableId": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
ratingTableId | string | true | the rating table ID to use to create a new model |
CrossValidationRetrieveResponse
{
"cvScores": "\n {\n \"cvScores\": {\n \"FVE Gamma\": {\n \"0.0\": 0.24334,\n \"1.0\": 0.17757,\n \"2.0\": 0.21803,\n \"3.0\": 0.20185,\n \"4.0\": 0.20576\n },\n \"FVE Poisson\": {\n \"0.0\": 0.24527,\n \"1.0\": 0.22092,\n \"2.0\": 0.22451,\n \"3.0\": 0.24417,\n \"4.0\": 0.21654\n }\n }\n }\n"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
cvScores | object | true | A dictionary cvScores with sub-dictionary keyed by partition_id , each partition_id is itself a dictionary keyed by metric_name where the value is the reading for that particular metric for the partition_id. |
CustomModelDetails
{
"createdAt": "string",
"creatorEmail": "string",
"creatorId": "string",
"creatorName": "string",
"id": "string",
"versionLabel": "string"
}
Details of the custom model associated to this registered model version
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
createdAt | string | true | Time when the custom model was created | |
creatorEmail | string¦null | false | Email of the user who created the custom model | |
creatorId | string | true | ID of the creator of the custom model | |
creatorName | string¦null | false | Name of the user who created the custom model | |
id | string | true | ID of the associated custom model | |
versionLabel | string¦null | false | Label of associated custom model version. |
CustomModelShortResponse
{
"id": "string",
"name": "string"
}
Custom model associated with this deployment.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
id | string | true | The ID of the custom model. | |
name | string | true | User-friendly name of the model. |
CustomModelVersionShortResponse
{
"id": "string",
"label": "string"
}
Custom model version associated with this deployment.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
id | string | true | The ID of the custom model version. | |
label | string | true | User-friendly name of the model version. |
CustomTrainingBlueprintCreate
{
"customModelVersionId": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
customModelVersionId | string | true | The ID of the specific model version from which to create a custom training blueprint. |
CustomTrainingBlueprintListResponse
{
"count": 0,
"data": [
{
"createdAt": "string",
"customModel": {
"id": "string",
"name": "string"
},
"customModelVersion": {
"id": "string",
"label": "string"
},
"executionEnvironment": {
"id": "string",
"name": "string"
},
"executionEnvironmentVersion": {
"id": "string",
"label": "string"
},
"targetType": "Binary",
"trainingHistory": [
{
"creationDate": "string",
"lid": "string",
"pid": "string",
"projectModelsCount": 0,
"projectName": "string",
"targetName": "string"
}
],
"userBlueprintId": "string"
}
],
"next": "http://example.com",
"previous": "http://example.com",
"totalCount": 0
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | false | Number of items returned on this page. | |
data | [CustomTrainingBlueprintResponse] | true | List of training model blueprints. | |
next | string(uri)¦null | true | URL pointing to the next page (if null, there is no next page). | |
previous | string(uri)¦null | true | URL pointing to the previous page (if null, there is no previous page). | |
totalCount | integer | true | The total number of items across all pages. |
CustomTrainingBlueprintResponse
{
"createdAt": "string",
"customModel": {
"id": "string",
"name": "string"
},
"customModelVersion": {
"id": "string",
"label": "string"
},
"executionEnvironment": {
"id": "string",
"name": "string"
},
"executionEnvironmentVersion": {
"id": "string",
"label": "string"
},
"targetType": "Binary",
"trainingHistory": [
{
"creationDate": "string",
"lid": "string",
"pid": "string",
"projectModelsCount": 0,
"projectName": "string",
"targetName": "string"
}
],
"userBlueprintId": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
createdAt | string | true | ISO-8601 timestamp of when the blueprint was created. | |
customModel | CustomModelShortResponse | true | Custom model associated with this deployment. | |
customModelVersion | CustomModelVersionShortResponse | true | Custom model version associated with this deployment. | |
executionEnvironment | ExecutionEnvironmentShortResponse | true | Execution environment associated with this deployment. | |
executionEnvironmentVersion | ExecutionEnvironmentVersionShortResponse | true | Execution environment version associated with this deployment. | |
targetType | string | true | The target type of the training model. | |
trainingHistory | [TrainingHistoryEntry] | true | List of instances of this blueprint having been trained. | |
userBlueprintId | string | true | User Blueprint ID that can be used to train the model. |
Enumerated Values¶
Property | Value |
---|---|
targetType | [Binary , Regression , Multiclass , Anomaly , Transform , TextGeneration , Unstructured , VectorDatabase ] |
DatetimeModelDetailsResponse
{
"backtests": [
{
"index": 0,
"score": 0,
"status": "COMPLETED",
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"blueprintId": "string",
"dataSelectionMethod": "duration",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featurelistId": "string",
"featurelistName": "string",
"forecastWindowEnd": 0,
"forecastWindowStart": 0,
"hasFinetuners": true,
"holdoutScore": 0,
"holdoutStatus": "COMPLETED",
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"backtesting\": 0.50166,\n \"backtestingScores\": [0.51206, 0.49436, null, 0.62516],\n \"crossValidation\": null\n },\n \"RMSE\": {\n \"holdout\": null,\n \"validation\": 21.0836,\n \"backtesting\": 23.361932,\n \"backtestingScores\": [0.4403, 0.4213, null, 0.5132],\n \"crossValidation\": null\n }\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": null,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingInfo": {
"holdoutTrainingDuration": "string",
"holdoutTrainingEndDate": "2019-08-24T14:15:22Z",
"holdoutTrainingRowCount": 0,
"holdoutTrainingStartDate": "2019-08-24T14:15:22Z",
"predictionTrainingDuration": "string",
"predictionTrainingEndDate": "2019-08-24T14:15:22Z",
"predictionTrainingRowCount": 0,
"predictionTrainingStartDate": "2019-08-24T14:15:22Z"
},
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z",
"windowsBasisUnit": "MILLISECOND"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
backtests | [BacktestStatusResponse] | true | information on each backtesting fold of the model | |
blueprintId | string | true | The blueprint used to construct the model. | |
dataSelectionMethod | string | false | Identifies which setting defines the training size of the model when making predictions and scoring. Only used by datetime models. | |
effectiveFeatureDerivationWindowEnd | integer | true | maximum: 0 |
Only available for time series projects. How many timeUnits into the past relative to the forecast point the feature derivation window should end. |
effectiveFeatureDerivationWindowStart | integer | true | maximum: 0 (exclusive) |
Only available for time series projects. How many timeUnits into the past relative to the forecast point the user needs to provide history for at prediction time. This can differ from the featureDerivationWindowStart set on the project due to the differencing method and period selected. |
featurelistId | string¦null | true | The ID of the feature list used by the model. | |
featurelistName | string¦null | true | The name of the feature list used by the model. If null, themodel was trained on multiple feature lists. | |
forecastWindowEnd | integer | true | minimum: 0 |
Only available for time series projects. How many timeUnits into the future relative to the forecast point the forecast window should end. |
forecastWindowStart | integer | true | minimum: 0 |
Only available for time series projects. How many timeUnits into the future relative to the forecast point the forecast window should start. |
hasFinetuners | boolean | false | Whether a model has fine tuners. | |
holdoutScore | number¦null | true | the holdout score of the model according to the project metric, if the score is available and the holdout is unlocked | |
holdoutStatus | string | true | the status of the holdout fold | |
id | string | true | The ID of the model. | |
isAugmented | boolean | false | Whether a model was trained using augmentation. | |
isFrozen | boolean | true | Indicates whether the model is frozen, i.e., uses tuning parameters from a parent model. | |
isNClustersDynamicallyDetermined | boolean | false | Whether number of clusters is dynamically determined. Only valid in unsupervised clustering projects. | |
isStarred | boolean | true | Indicates whether the model has been starred. | |
isTrainedIntoHoldout | boolean | true | Indicates if model used holdout data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed validation size. | |
isTrainedIntoValidation | boolean | true | Indicates if model used validation data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed training size. | |
isTrainedOnGpu | boolean | true | Whether the model was trained using GPU workers. | |
lifecycle | ModelLifecycle | true | Object returning model lifecycle. | |
linkFunction | string¦null | true | The link function the final modeler uses in the blueprint. If no link function exists, returns null. | |
metrics | object | true | Object where each metric has validation, backtesting, backtestingScores and holdout scores reported, or null if they have not been computed. The validation score will be the score of the first backtest, which will be computed during initial model training. The backtesting and backtestingScores scores are computed when requested via POST /api/v2/projects/{projectId}/datetimeModels/{modelId}/backtests/. The backtesting score is the average score across all backtests. The backtestingScores is an array of scores for each backtest, with the scores reported as null if the backtest score is unavailable. The holdout score is the score against the holdout data, using the training data defined in trainingInfo . |
|
modelCategory | string | true | Indicates the type of model. Returns prime for DataRobot Prime models, blend for blender models, combined for combined models, and model for all other models. |
|
modelFamily | string | true | the family model belongs to, e.g. SVM, GBM, etc. | |
modelFamilyFullName | string | true | The full name of the family that the model belongs to. For e.g., Support Vector Machine, Gradient Boosting Machine, etc. | |
modelNumber | integer¦null | true | minimum: 0 (exclusive) |
The model number from the Leaderboard. |
modelType | string | true | Identifies the model (e.g.,Nystroem Kernel SVM Regressor ). |
|
monotonicDecreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically decreasing relationship to the target. If null, no such constraints are enforced. | |
monotonicIncreasingFeaturelistId | string¦null | true | the ID of the featurelist that defines the set of features with a monotonically increasing relationship to the target. If null, no such constraints are enforced. | |
nClusters | integer¦null | false | The number of clusters to use in the specified unsupervised clustering model. Only valid in unsupervised clustering projects. | |
parentModelId | string¦null | true | The ID of the parent model if the model is frozen or a result of incremental learning. Null otherwise. | |
predictionThreshold | number | true | maximum: 1 minimum: 0 |
threshold used for binary classification in predictions. |
predictionThresholdReadOnly | boolean | true | indicates whether modification of a predictions threshold is forbidden. Since v2.22 threshold modification is allowed. | |
processes | [string]¦null | true | maxItems: 100 |
The list of processes used by the model. |
projectId | string | true | The ID of the project to which the model belongs. | |
samplePct | string | true | always null for datetime models | |
samplingMethod | string | false | indicates sampling method used to select training data in datetime models. For row-based project this is the way how requested number of rows are selected.For other projects (duration-based, start/end, project settings) - how specified percent of rows (timeWindowSamplePct) is selected from specified time window. | |
supportsComposableMl | boolean | true | indicates whether this model is supported in Composable ML. | |
supportsMonotonicConstraints | boolean | true | whether this model supports enforcing monotonic constraints | |
timeWindowSamplePct | integer¦null | false | maximum: 100 (exclusive) minimum: 0 (exclusive) |
An integer between 1 and 99, indicating the percentage of sampling within the time window. The points kept are determined by samplingMethod option. Will be null if no sampling was specified. Only used by datetime models. |
trainingDuration | string¦null | true | the duration spanned by the dates in the partition column for the data used to train the model | |
trainingEndDate | string(date-time)¦null | true | the end date of the dates in the partition column for the data used to train the model | |
trainingInfo | TrainingInfoResponse | true | holdout and prediction training data details | |
trainingRowCount | integer¦null | true | minimum: 0 (exclusive) |
The number of rows used to train the model. |
trainingStartDate | string(date-time)¦null | true | the start date of the dates in the partition column for the data used to train the model | |
windowsBasisUnit | string | true | Only available for time series projects. Indicates which unit is the basis for the feature derivation window and the forecast window. |
Enumerated Values¶
Property | Value |
---|---|
dataSelectionMethod | [duration , rowCount , selectedDateRange , useProjectSettings ] |
holdoutStatus | [COMPLETED , INSUFFICIENT_DATA , HOLDOUT_BOUNDARIES_EXCEEDED ] |
modelCategory | [model , prime , blend , combined , incrementalLearning ] |
samplePct | null |
samplingMethod | [random , latest ] |
windowsBasisUnit | [MILLISECOND , SECOND , MINUTE , HOUR , DAY , WEEK , MONTH , QUARTER , YEAR , ROW ] |
DatetimeModelRecordResponse
{
"blueprintId": "string",
"dataSelectionMethod": "duration",
"featurelistId": "string",
"featurelistName": "string",
"id": "string",
"isFrozen": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"metrics": "\n {\n \"metrics\": {\n \"RMSE\": {\n \"holdout\": 5000,\n \"validation\": 5100,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"crossValidation\": 6000,\n \"training\": null\n },\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"crossValidation\": 0.50166,\n \"backtesting\": null,\n \"backtestingScores\": null,\n \"training\": null\n },\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelNumber": 0,
"modelType": "string",
"parentModelId": "string",
"processes": [
"string"
],
"projectId": "string",
"samplePct": 0,
"samplingMethod": "random",
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
blueprintId | string | true | The blueprint used to construct the model. | |
dataSelectionMethod | string | false | Identifies which setting defines the training size of the model when making predictions and scoring. Only used by datetime models. | |
featurelistId | string¦null | true | The ID of the feature list used by the model. | |
featurelistName | string¦null | true | The name of the feature list used by the model. If null, themodel was trained on multiple feature lists. | |
id | string | true | The ID of the model. | |
isFrozen | boolean | true | Indicates whether the model is frozen, i.e., uses tuning parameters from a parent model. | |
isStarred | boolean | true | Indicates whether the model has been starred. | |
isTrainedIntoHoldout | boolean | true | Indicates if model used holdout data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed validation size. | |
isTrainedIntoValidation | boolean | true | Indicates if model used validation data for training. This can happen for time-aware models using trainingStartDate/trainingEndDate parameters or when the model's training row count was greater than the max allowed training size. | |
isTrainedOnGpu | boolean | true | Whether the model was trained using GPU workers. | |
metrics | object | true | The performance of the model according to various metrics, where each metric has validation, crossValidation, holdout, and training scores reported, or null if they have not been computed. | |
modelCategory | string | true | Indicates the type of model. Returns prime for DataRobot Prime models, blend for blender models, combined for combined models, and model for all other models. |
|
modelFamily | string | true | The full name of the family that the model belongs to (e.g., Support Vector Machine, Gradient Boosting Machine, etc.). | |
modelNumber | integer¦null | true | minimum: 0 (exclusive) |
The model number from the Leaderboard. |
modelType | string | true | Identifies the model (e.g.,Nystroem Kernel SVM Regressor ). |
|
parentModelId | string¦null | true | The ID of the parent model if the model is frozen or a result of incremental learning. Null otherwise. | |
processes | [string]¦null | true | maxItems: 100 |
The list of processes used by the model. |
projectId | string | true | The ID of the project to which the model belongs. | |
samplePct | number¦null | true | minimum: 0 (exclusive) |
The percentage of the dataset used in training the model. |
samplingMethod | string | false | indicates sampling method used to select training data in datetime models. For row-based project this is the way how requested number of rows are selected.For other projects (duration-based, start/end, project settings) - how specified percent of rows (timeWindowSamplePct) is selected from specified time window. | |
timeWindowSamplePct | integer¦null | false | maximum: 100 (exclusive) minimum: 0 (exclusive) |
An integer between 1 and 99, indicating the percentage of sampling within the time window. The points kept are determined by samplingMethod option. Will be null if no sampling was specified. Only used by datetime models. |
trainingDuration | string¦null | true | the duration spanned by the dates in the partition column for the data used to train the model | |
trainingEndDate | string(date-time)¦null | true | the end date of the dates in the partition column for the data used to train the model | |
trainingRowCount | integer¦null | true | minimum: 0 (exclusive) |
The number of rows used to train the model. |
trainingStartDate | string(date-time)¦null | true | the start date of the dates in the partition column for the data used to train the model |
Enumerated Values¶
Property | Value |
---|---|
dataSelectionMethod | [duration , rowCount , selectedDateRange , useProjectSettings ] |
modelCategory | [model , prime , blend , combined , incrementalLearning ] |
samplingMethod | [random , latest ] |
DatetimeModelSubmissionResponse
{
"message": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
message | string | true | Any extended message to include about the result. For example, if a job is submitted that is a duplicate of a job that has already been added to the queue, the message will mention that no new job was created. |
DatetimeModelsResponse
{
"count": 0,
"data": [
{
"backtests": [
{
"index": 0,
"score": 0,
"status": "COMPLETED",
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z"
}
],
"blueprintId": "string",
"dataSelectionMethod": "duration",
"effectiveFeatureDerivationWindowEnd": 0,
"effectiveFeatureDerivationWindowStart": 0,
"featurelistId": "string",
"featurelistName": "string",
"forecastWindowEnd": 0,
"forecastWindowStart": 0,
"hasFinetuners": true,
"holdoutScore": 0,
"holdoutStatus": "COMPLETED",
"id": "string",
"isAugmented": true,
"isFrozen": true,
"isNClustersDynamicallyDetermined": true,
"isStarred": true,
"isTrainedIntoHoldout": true,
"isTrainedIntoValidation": true,
"isTrainedOnGpu": true,
"lifecycle": {
"reason": "string",
"stage": "active"
},
"linkFunction": "string",
"metrics": "\n {\n \"metrics\": {\n \"FVE Poisson\": {\n \"holdout\": null,\n \"validation\": 0.56269,\n \"backtesting\": 0.50166,\n \"backtestingScores\": [0.51206, 0.49436, null, 0.62516],\n \"crossValidation\": null\n },\n \"RMSE\": {\n \"holdout\": null,\n \"validation\": 21.0836,\n \"backtesting\": 23.361932,\n \"backtestingScores\": [0.4403, 0.4213, null, 0.5132],\n \"crossValidation\": null\n }\n }\n }\n",
"modelCategory": "model",
"modelFamily": "string",
"modelFamilyFullName": "string",
"modelNumber": 0,
"modelType": "string",
"monotonicDecreasingFeaturelistId": "string",
"monotonicIncreasingFeaturelistId": "string",
"nClusters": 0,
"parentModelId": "string",
"predictionThreshold": 1,
"predictionThresholdReadOnly": true,
"processes": [
"string"
],
"projectId": "string",
"samplePct": null,
"samplingMethod": "random",
"supportsComposableMl": true,
"supportsMonotonicConstraints": true,
"timeWindowSamplePct": 0,
"trainingDuration": "string",
"trainingEndDate": "2019-08-24T14:15:22Z",
"trainingInfo": {
"holdoutTrainingDuration": "string",
"holdoutTrainingEndDate": "2019-08-24T14:15:22Z",
"holdoutTrainingRowCount": 0,
"holdoutTrainingStartDate": "2019-08-24T14:15:22Z",
"predictionTrainingDuration": "string",
"predictionTrainingEndDate": "2019-08-24T14:15:22Z",
"predictionTrainingRowCount": 0,
"predictionTrainingStartDate": "2019-08-24T14:15:22Z"
},
"trainingRowCount": 0,
"trainingStartDate": "2019-08-24T14:15:22Z",
"windowsBasisUnit": "MILLISECOND"
}
],
"next": "http://example.com",
"previous": "http://example.com"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
count | integer | false | Number of items returned on this page. | |
data | [DatetimeModelDetailsResponse] | true | each has the same schema as if retrieving the model individually from GET /api/v2/projects/{projectId}/datetimeModels/{modelId}/. | |
next | string(uri)¦null | true | URL pointing to the next page (if null, there is no next page). | |
previous | string(uri)¦null | true | URL pointing to the previous page (if null, there is no previous page). |
DependencyBuildLogResponse
{
"data": "string"
}
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
data | string(binary) | true | The custom model version's dependency build log in tar.gz format. |
DeploymentPredictionEnvironmentResponse
{
"id": "string",
"isManagedByManagementAgent": true,
"name": "string",
"platform": "aws",
"plugin": "string",
"supportedModelFormats": [
"datarobot"
]
}
Information related to the current PredictionEnvironment.
Properties¶
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
id | string¦null | true | ID of the PredictionEnvironment. | |
isManagedByManagementAgent | boolean | true | True if PredictionEnvironment is using Management Agent. | |
name | string | true | Name of the PredictionEnvironment. | |
platform | string | true | Platform of the PredictionEnvironment. | |
plugin | string¦null | false | Plugin name of the PredictionEnvironment. | |
supportedModelFormats | [string] | false | maxItems: 4 minItems: 1 |
Model formats that the PredictionEnvironment supports. |
Enumerated Values¶
Property | Value |
---|---|
platform | [aws , gcp , azure , onPremise , datarobot , datarobotServerless , openShift , other , snowflake , sapAiCore ] |
DerivedFeatures
{
"coefficient": 0,
"derivedFeature": "string",
"originalFeature": "string",
"stageCoefficients": [
{
"coefficient": 0,
"stage": "string"
}
],
"transformations": [
{
"name": "string",
"value": "string"
}
],
"type": "string"
}