Feature selection notebooks¶
DataRobot offers end-to-end code examples via Jupyter notebooks that help you find complete examples of common data science and machine learning workflows. Review the notebooks that outline feature selection below.
Topic | Describes... |
---|---|
Feature Importance Rank Ensembling | Learn about the benefits of Feature Importance Rank Ensembling (FIRE)—a method of advanced feature selection that uses a median rank aggregation of feature impacts across several models created during a run of Autopilot. |
Advanced feature selection with Python | Use Python to select features by creating aggregated Feature Impact. |
更新しました February 7, 2025
このページは役に立ちましたか?
ありがとうございます。どのような点が役に立ちましたか?
より良いコンテンツを提供するには、どうすればよいでしょうか?
アンケートにご協力いただき、ありがとうございました。