Skip to content

アプリケーション内で をクリックすると、お使いのDataRobotバージョンに関する全プラットフォームドキュメントにアクセスできます。

DataRobot apicore package walkthrough

In v2.29 of the R Client, available for public preview, DataRobot has introduced a new dependency: the datarobot.apicore package. The package provides you with access to all of the capabilities of the DataRobot platform previously unavailable for the R client. The package is generated from the OpenAPI specification of the DataRobot Public API.

Use the following snippet to install the two packages:

# Use the following links to install the package directly from GitHub
library(remotes)
install_github("datarobot/rsdk", subdir = "datarobot.apicore", ref = github_release())
install_github("datarobot/rsdk", subdir = "datarobot", ref = github_release())

# Download the tarballs directly from the GitHub Releases page at
# https://github.com/datarobot/rsdk/releases
# Then run install_packages()

The datarobot.apicore package is loaded into your R session when you load the datarobot package.

library(datarobot)
#> Loading required package: datarobot.apicore
#> Authenticating with config at: /Users/druser/.config/datarobot/drconfig.yaml
#> Authentication token saved

The following code lets you check the version of the API server that you are connected to.

iapi <- datarobot.apicore::InfrastructureApi$new()
iapi$VersionList()
#> $versionString
#> [1] "2.30.0"
#>
#> $minor
#> [1] 30
#>
#> $major
#> [1] 2
#>
#> attr(,"class")
#> [1] "VersionRetrieveResponse"

Next, try using the endpoint GET /datasets. It retrieves all of the datasets that you have access to in the AI Catalog (a new method introduced in v2.29).

catalogapi <- datarobot.apicore::AiCatalogApi$new()
try(catalogapi$DatasetsList())
#> Error in private$DatasetsListWithHttpInfo(limit, offset, category, orderBy,  :
#>   Missing required parameter `limit`.

v2.29 also introduces request parameter validation with helpful error messaging. Fill in the parameters used below (both required and optional).

datasets <- try(catalogapi$DatasetsList(
  limit = 2,
  offset = 0,
  category = "TRAINING",
  orderBy = "created"
))
dataset <- datasets$data[[1]]
dataset[c("name", "datasetId", "datasetSize", "creationDate")]
#> $name
#> [1] "SPI 2016-2019.csv"
#>
#> $datasetId
#> [1] "600f45bba65b448826884d5f"
#>
#> $datasetSize
#> [1] 8795275
#>
#> $creationDate
#> [1] "2021-01-25 22:27:07 UTC"

The datarobot.apicore package is very expressive and can provide R-specific functionality around the DataRobot Public API. Generally speaking, though, you may not need this additional customization, so the datarobot package provides several conveniences to simplify your development.

Access the API

The datarobot environment hosts a singleton list, dr, containing instances of all of the different API classes in datarobot.apicore.

exists("dr")
#> [1] TRUE
print(names(dr))
#>  [1] "AiCatalogApi"            "AnalyticsApi"           
#>  [3] "ApplicationsApi"         "BlueprintsApi"          
#>  [5] "CommentsApi"             "CredentialsApi"         
#>  [7] "CustomTasksApi"          "DataConnectivityApi"    
#>  [9] "DatetimePartitioningApi" "DeploymentsApi"         
#> [11] "DocumentationApi"        "GovernanceApi"          
#> [13] "ImagesApi"               "InfrastructureApi"      
#> [15] "InsightsApi"             "JobsApi"                
#> [17] "MlopsApi"                "ModelsApi"              
#> [19] "NotificationsApi"        "PredictionsApi"         
#> [21] "ProjectsApi"             "SsoConfigurationApi"    
#> [23] "UseCaseApi"              "UserManagementApi"      
#> [25] "UtilitiesApi"

You can use this list to quickly access API methods and avoid constructing new objects every time. Try checking the API server version again.

# Server version
dr$InfrastructureApi$VersionList()
#> $versionString
#> [1] "2.30.0"
#>
#> $minor
#> [1] 30
#>
#> $major
#> [1] 2
#>
#> attr(,"class")
#> [1] "VersionRetrieveResponse"

# AI catalog datasets
datasets <- try(dr$AiCatalogApi$DatasetsList(
  limit = 2,
  offset = 0,
  category = "TRAINING",
  orderBy = "created"
))
dataset <- datasets$data[[1]]
dataset[c("name", "datasetId", "datasetSize", "creationDate")]
#> $name
#> [1] "SPI 2016-2019.csv"
#>
#> $datasetId
#> [1] "600f45bba65b448826884d5f"
#>
#> $datasetSize
#> [1] 8795275
#>
#> $creationDate
#> [1] "2021-01-25 22:27:07 UTC"

The example above shows that you can use one less line of code and create one less object per API call.

Note

The API classes in the dr list all use the default authentication method, ConnectToDataRobot().

Convenience wrapper functions

DataRobot provides a set of wrapper functions around every API endpoint. These functions:

  • Follow the saner naming convention of VerbObject() that has existed in the R API Client. For example, ListDatasets() rather than DatasetsList().
  • Reuse the old names for functions that were already implemented in the R API Client before v2.29. For example, GetServerVersion() rather than VersionList().
  • Set default values if they were provided in the OpenAPI spec.

Try checking the API server version one more time:

GetServerVersion()
#> $major
#> [1] 2
#>
#> $minor
#> [1] 30
#>
#> $versionString
#> [1] "2.30.0"
#>
#> $releasedVersion
#> [1] "2.29.0"

Now, try looking up training datasets.

trainingDatasets <- try(ListDatasets(
  category = "TRAINING",
  orderBy = "created",
  datasetVersionIds = c(),
  offset = 0,
  limit = 2
))
dataset <- trainingDatasets$data[[1]]
dataset[c("name", "datasetId", "datasetSize", "creationDate")]
#> $name
#> [1] "SPI 2016-2019.csv"
#>
#> $datasetId
#> [1] "600f45bba65b448826884d5f"
#>
#> $datasetSize
#> [1] 8795275
#>
#> $creationDate
#> [1] "2021-01-25 22:27:07 UTC"

DataRobot recommends you use whichever pattern you’re most comfortable with, but the convenience wrapper functions provide syntactic ease.


更新しました 2024年12月16日