Code-first (V9.2)¶
November 22, 2023
The DataRobot v9.2 release includes many new features and capabilities for code-first users, described below. See additional details of Release 9.2 in the data and modeling and MLOps release announcements.
Code-first features
Name | GA | Preview |
---|---|---|
Notebooks | ||
Schedule notebook jobs | ✔ | |
Use custom environments in DataRobot Notebooks | ✔ | |
API enhancements | ||
DataRobot REST API v2.32 | ✔ | |
Python client v3.2 | ✔ |
Notebooks¶
Preview¶
Schedule notebook jobs¶
Now available for preview, you can automate your code-based workflows by scheduling notebooks to run on a schedule in non-interactive mode. Notebook scheduling is managed by notebook jobs. Additionally, you can parameterize a notebook to enhance the automation experience enabled by notebook scheduling. By defining certain values in a notebook as parameters, you can provide inputs for those parameters when a notebook job runs instead of having to continuously modify the notebook itself to change the values for each run.
Required feature flag: Enable Notebooks Scheduling
Preview documentation.
Use custom environments in DataRobot Notebooks¶
Now available for preview, DataRobot Notebooks is integrated with DataRobot custom environments, allowing you to define reusable custom Docker images for running notebook sessions. You can create a custom environment to use for your notebook sessions if you want full control over the environment, and to leverage reproducible dependencies beyond those available in the built-in images.
Required feature flag: Enable Notebooks Custom Environments
Preview documentation.
API¶
GA¶
DataRobot REST API v2.32¶
DataRobot's v2.32 for the REST API is now generally available. For a complete list of changes introduced in v2.31, view the REST API changelog.
New features¶
- New routes to retrieve document thumbnail insights:
GET /api/v2/projects/(projectId)/documentThumbnails/
GET /api/v2/projects/(projectId)/documentPages/(documentPageId)/file/
GET /api/v2/projects/(projectId)/documentThumbnailSamples/
GET /api/v2/projects/(projectId)/documentThumbnailBins/
- New routes to compute and retrieve document text extraction sample insights:
POST /api/v2/models/(modelId)/documentTextExtractionSamples/
GET /api/v2/projects/(projectId)/documentTextExtractionSamples/
GET /api/v2/models/(modelId)/documentTextExtractionSampleDocuments/
GET /api/v2/models/(modelId)/documentTextExtractionSamplePages/
- New routes to retrieve document data quality information:
GET /api/v2/projects/(projectId)/documentsDataQualityLog/
GET /api/v2/datasets/(datasetId)/documentsDataQualityLog/
GET /api/v2/datasets/(datasetId)/versions/(datasetVersionId)/documentsDataQualityLog/
- New routes to retrieve document data quality information as log files:
GET /api/v2/projects/(projectId)/documentsDataQualityLog/file/
GET /api/v2/datasets/(datasetId)/documentsDataQualityLog/file/
,GET /api/v2/datasets/(datasetId)/versions/(datasetVersionId)/documentsDataQualityLog/file/
- New route to retrieve deployment predictions vs actuals over time:
GET /api/v2/deployments/(deploymentId)/predictionsVsActualsOverTime/
- New routes to managed registered models and registered model versions(previously known as Model Packages):
GET /api/v2/registeredModels/
GET /api/v2/registeredModels/(registeredModelId)/
PATCH /api/v2/registeredModels/(registeredModelId)/
DELETE /api/v2/registeredModels/(registeredModelId)/
GET /api/v2/registeredModels/(registeredModelId)/versions/
GET /api/v2/registeredModels/(registeredModelId)/versions/(versionId)/
PATCH /api/v2/registeredModels/(registeredModelId)/sharedRoles/
GET /api/v2/registeredModels/(registeredModelId)/sharedRoles/
GET /api/v2/registeredModels/(registeredModelId)/deployments/
GET /api/v2/registeredModels/(registeredModelId)/versions/(versionId)/deployments/
- Added new routes for Use Cases, listed below:
GET /api/v2/useCases/
POST /api/v2/useCases/
GET /api/v2/useCases/(useCaseId)/
PATCH /api/v2/useCases/(useCaseId)/
DELETE /api/v2/useCases/(useCaseId)/
GET /api/v2/useCases/(useCaseId)/projects/
GET /api/v2/useCases/(useCaseId)/applications/
GET /api/v2/useCases/(useCaseId)/datasets/
GET /api/v2/useCases/(useCaseId)/notebooks/
GET /api/v2/useCases/(useCaseId)/playgrounds/
GET /api/v2/useCases/(useCaseId)/vectorDatabases/
GET /api/v2/useCases/(useCaseId)/modelsForComparison/
GET /api/v2/useCases/(useCaseId)/filterMetadata/
GET /api/v2/useCases/(useCaseId)/resources/
GET /api/v2/useCases/(useCaseId)/sharedRoles/
PATCH /api/v2/useCases/(useCaseId)/sharedRoles/
POST /api/v2/useCases/(useCaseId)/(referenceCollectionType)/(entityId)/
DELETE /api/v2/useCases/(useCaseId)/(referenceCollectionType)/(entityId)/
Python client v3.2¶
v3.2 for DataRobot's Python client is now generally available. For a complete list of changes introduced in v2.31, view the Python client changelog.
New Features¶
- Added support for Python 3.11.
- Added new a library, "strenum", to add
StrEnum
support while maintaining backwards compatibility with Python 3.7-3.10. DataRobot does not use the nativeStrEnum
class in Python 3.11. - Added a new class
PredictionEnvironment
for interacting with DataRobot prediction environments. - Extended the advanced options available when setting a target to include new parameters:
modelGroupId
,modelRegimeId
, andmodelBaselines
(part of theAdvancedOptions
object). These parameters allow you to specify the user columns required to run time series models without feature derivation in OTV projects. -
Added a new method
PredictionExplanations.create_on_training_data
, for computing prediction explanation on training data. -
Added a new class
RegisteredModel
for interacting with DataRobot registered models to support the following methods: RegisteredModel.get
to retrieve a RegisteredModel object by ID.RegisteredModel.list
to list all registered models.RegisteredModel.archive
to permanently archive registered model.RegisteredModel.update
to update registered model.RegisteredModel.get_shared_roles
to retrieve access control information for a registered model.RegisteredModel.share
to share a registered model.RegisteredModel.get_version
to retrieve a RegisteredModelVersion object by ID.RegisteredModel.list_versions
to list registered model versions.-
RegisteredModel.list_associated_deployments
to list deployments associated with a registered model. -
Added a new class
RegisteredModelVersion
for interacting with DataRobot registered model versions (also known as model packages) to support the following methods: RegisteredModelVersion.create_for_external
to create a new registered model version from an external model.RegisteredModelVersion.list_associated_deployments
to list deployments associated with a registered model version.RegisteredModelVersion.create_for_leaderboard_item
to create a new registered model version from a Leaderboard model.-
RegisteredModelVersion.create_for_custom_model_version
to create a new registered model version from a custom model version. -
Added a new method
Deployment.create_from_registered_model_version
to support creating deployments from a registered model version. -
Added a new method
Deployment.download_model_package_file
to support downloading model package files (.mlpkg) of the currently deployed model. -
Added support for retrieving document thumbnails:
DocumentThumbnail <datarobot.models.documentai.document.DocumentThumbnail>
-
DocumentPageFile <datarobot.models.documentai.document.DocumentPageFile>
-
Added support to retrieve document text extraction samples using:
DocumentTextExtractionSample
DocumentTextExtractionSamplePage
-
DocumentTextExtractionSampleDocument
-
Added new fields to
CustomTaskVersion
for controlling network policies. The new fields were also added to the response. This can be set withdatarobot.enums.CustomTaskOutgoingNetworkPolicy
. -
Added a new method
BatchPredictionJob.score_with_leaderboard_model
to run batch predictions using a Leaderboard model instead of a deployment. -
Set
IntakeSettings
andOutputSettings
to useIntakeAdapters
andOutputAdapters
enum values respectively for the propertytype
. -
Added the method
Deployment.get_predictions_vs_actuals_over_time
to retrieve a deployment's predictions vs actuals over time data.
All product and company names are trademarks™ or registered® trademarks of their respective holders. Use of them does not imply any affiliation with or endorsement by them.