再トレーニングジョブをの作成¶
手動またはテンプレートから、コードベースの再トレーニングポリシーを実行するジョブを追加します。 再トレーニングジョブを表示および追加するには、ジョブ > 再トレーニングタブに移動し、以下の操作を行います。
-
新しい再トレーニングジョブを手動で追加するには、+ 新しい再トレーニングジョブを追加(またはジョブパネルが開いている場合は最小化された追加ボタン )をクリックします。
-
テンプレートから再トレーニングジョブを作成するには、追加ボタンの横にある をクリックし、再トレーニングの下にあるテンプレートから新規作成をクリックします。
The new job opens to the Assemble tab. Depending on the creation option you selected, proceed to the configuration steps linked in the table below.
再トレーニングジョブタイプ | 説明 |
---|---|
新しい再トレーニングジョブを追加 | Manually add a job implementing a code-based retraining policy. |
テンプレートから新規作成 | Add a job, from a template provided by DataRobot, implementing a code-based retraining policy. |
Retraining jobs require metadata
All retraining jobs require a metadata.yaml
file to associate the retraining policy with a deployment and a retraining policy.
新しい再トレーニングジョブを追加¶
To manually add a job for code-based retraining:
-
On the Assemble tab for the new job, click the job name (or the edit icon ) to enter a new job name, and then click confirm :
-
環境セクションで、ジョブの基本環境を選択します。
-
ファイルセクションで、カスタムジョブを構築します。 ボックスにファイルをドラッグするか、このセクションのオプションを使用して、カスタムジョブの構築に必要なファイルを作成またはアップロードします。
オプション 説明 ソース/アップロードから選択 既存のカスタムジョブファイル( run.sh
、metadata.yaml
、など)をローカルファイルまたはローカルフォルダーとしてアップロードします。作成 空のファイルまたはテンプレートを含んだファイルとして新しいファイルを作成し、カスタムジョブに保存します。 - run.shを作成:エントリーポイントファイルの基本的で編集可能な例を作成します。
- metadata.yamlを作成:ランタイムパラメーターファイルの基本的で編集可能な例を作成します。
- README.mdを作成:基本的で編集可能なREADMEファイルを作成します。
- job.pyを作成:実行時のパラメーターとデプロイをプリントするための基本的で編集可能なPythonジョブファイルを作成します。
- サンプルジョブを作成:すべてのテンプレートファイルを結合して、基本的で編集可能なカスタムジョブを作成します。 簡単にランタイムパラメーターを設定し、このサンプルジョブを実行できます。
- 空白ファイルを作成:空のファイルを作成します。 名称未設定の横にある編集アイコン をクリックしてファイル名と拡張子を入力し、カスタムコンテンツを追加します。 次のステップでは、カスタム名とコンテンツを使用して、このように作成されたファイルをエントリーポイントとして識別できます。 新しいファイルを設定したら、保存をクリックします。
ファイルの置き換え
既存のファイルと同じ名前の新しいファイルを追加する場合、保存をクリックすると、ファイルセクションで古いファイルが置き換えられます。
-
設定セクションで、ジョブのエントリーポイントシェル(
.sh
)ファイルを設定します。run.sh
ファイルを追加した場合、そのファイルがエントリーポイントです。それ以外の場合は、ドロップダウンリストからエントリーポイントシェルファイルを選択する必要があります。 エントリーポイントファイルでは、複数のジョブファイルを調整できます。 -
リソースセクションのセクションヘッダーの横にある 編集をクリックして、以下を設定します。
プレビュー
Custom job resource bundles are off by default. この機能を有効にする方法については、DataRobotの担当者または管理者にお問い合わせください。
機能フラグ:リソースのバンドルを有効にする
設定 説明 リソースバンドル プレビュー機能 カスタムジョブが実行に使用するリソースを設定します。 ネットワークアクセス カスタムジョブのエグレストラフィックを設定します。 ネットワークアクセスで、以下のいずれかを選択します。 - パブリック:デフォルト設定。 カスタムジョブは、パブリックネットワーク内の任意の完全修飾ドメイン名(FQDN)にアクセスして、サードパーティのサービスを利用できます。
- なし:カスタムジョブはパブリックネットワークから隔離され、サードパーティのサービスにアクセスできません。
デフォルトのネットワークアクセス
_マネージドAIプラットフォーム_では、ネットワークアクセスはデフォルトでパブリックに設定されていますが、変更可能です。 _セルフマネージドAIプラットフォーム_では、ネットワークアクセスはデフォルトでなしに設定されており、制限があります。ただし、管理者は、DataRobotプラットフォームの設定時にこれを変更できます。 詳細については、DataRobotの担当者または管理者にお問い合わせください。
-
(オプション)
metadata.yaml
ファイルをアップロードした場合は、設定したい各キー値の行の編集アイコン をクリックして、ランタイムパラメーターを定義します。 -
(オプション)タグ、指標、トレーニングパラメーター、アーティファクトに、追加の キー値を設定します。
Create a retraining job from a template¶
To add a pre-made retraining job from a template:
プレビュー
The jobs template gallery is on by default.
Feature flags: Enable Custom Jobs Template Gallery, Enable Custom Templates
-
In the Add custom job from gallery panel, click the job template you want to create a job from.
-
Review the job description, Execution environment, Metadata, and Files, then, click Create custom job:
The job opens to the Assemble tab.
-
On the Assemble tab for the new job, click the job name (or the edit icon ()) to enter a new job name, and then click confirm :
-
In the Environment section, review the Base environment for the job, set by the template.
-
In the Files section, review the files added to the job by the template:
-
Click the edit icon to modify the files added by the template.
-
Click the delete icon to remove files added by the template.
-
-
If you need to add new files, use the options in this section to create or upload the files required to assemble a custom job:
オプション 説明 アップロード 既存のカスタムジョブファイル( run.sh
、metadata.yaml
、など)をローカルファイルまたはローカルフォルダーとしてアップロードします。作成 空のファイルまたはテンプレートを含んだファイルとして新しいファイルを作成し、カスタムジョブに保存します。 - run.shを作成:エントリーポイントファイルの基本的で編集可能な例を作成します。
- metadata.yamlを作成:ランタイムパラメーターファイルの基本的で編集可能な例を作成します。
- README.mdを作成:基本的で編集可能なREADMEファイルを作成します。
- job.pyを作成:実行時のパラメーターとデプロイをプリントするための基本的で編集可能なPythonジョブファイルを作成します。
- サンプルジョブを作成:すべてのテンプレートファイルを結合して、基本的で編集可能なカスタムジョブを作成します。 簡単にランタイムパラメーターを設定し、このサンプルジョブを実行できます。
- 空白ファイルを作成:空のファイルを作成します。 名称未設定の横にある編集アイコン()をクリックしてファイル名と拡張子を入力し、カスタムコンテンツを追加します。 次のステップでは、カスタム名とコンテンツを使用して、このように作成されたファイルをエントリーポイントとして識別できます。 新しいファイルを設定したら、保存をクリックします。
ファイルの置き換え
既存のファイルと同じ名前の新しいファイルを追加する場合、保存をクリックすると、ファイルセクションで古いファイルが置き換えられます。
-
In the Settings section, review the Entry point shell (
.sh
) file for the job, added by the template (usuallyrun.sh
). エントリーポイントファイルでは、複数のジョブファイルを調整できます。 -
In the Resources section, review the default resource settings for the job. To modify the settings, next to the section header, click Edit and configure the following:
本機能の提供について
Custom job resource bundles are off by default. この機能を有効にする方法については、DataRobotの担当者または管理者にお問い合わせください。
機能フラグ:リソースのバンドルを有効にする
設定 説明 リソースバンドル プレビュー機能 カスタムジョブが実行に使用するリソースを設定します。 ネットワークアクセス カスタムジョブのエグレストラフィックを設定します。 ネットワークアクセスで、以下のいずれかを選択します。 - パブリック:デフォルト設定。 カスタムジョブは、パブリックネットワーク内の任意の完全修飾ドメイン名(FQDN)にアクセスして、サードパーティのサービスを利用できます。
- なし:カスタムジョブはパブリックネットワークから隔離され、サードパーティのサービスにアクセスできません。
デフォルトのネットワークアクセス
_マネージドAIプラットフォーム_では、ネットワークアクセスはデフォルトでパブリックに設定されていますが、変更可能です。 _セルフマネージドAIプラットフォーム_では、ネットワークアクセスはデフォルトでなしに設定されており、制限があります。ただし、管理者は、DataRobotプラットフォームの設定時にこれを変更できます。 詳細については、DataRobotの担当者または管理者にお問い合わせください。
-
metadata.yaml
ファイルをアップロードした場合は、設定したい各キー値の行の編集アイコン()をクリックして、ランタイムパラメーターを定義します。 -
タグ、指標、トレーニングパラメーター、アーティファクトに、追加の キー値を設定します。
After you create a retraining job, you can add it to a deployment as a retraining policy.