Skip to content

アプリケーション内で をクリックすると、お使いのDataRobotバージョンに関する全プラットフォームドキュメントにアクセスできます。

カスタムモデルのメタデータを定義する

メタデータを定義するには、model-metadata.yamlファイルを作成して、タスクまたはモデルのディレクトリのトップレベルに置きます。 この手順はほとんどのケースで省略できますが、カスタムタスクが非数値データを出力する場合のカスタム変換タスクには必要です。 model-metadata.yamlは、custom.pyと同じフォルダーにあります。

以下のセクションでは、カスタムモデルとカスタムタスクのメタデータを定義する方法について説明します。 詳細については、DRUMリポジトリのカスタムモデルタスクの完全な例を参照してください。

一般的なメタデータのパラメーター

次の表で、タスクや推論モデルで利用可能なオプションについて説明します。 drum pushを使用して、作成するモデル/タスク/バージョンに関する情報を提供するには、そのパラメーターが必要です。 一部のパラメーターは、互換性の理由から、drum push以外でも必要です。

備考

そのmodelIDパラメーターは、指定されたIDを持つ既存のカスタムモデルやカスタムタスクに新しいバージョンを追加します。 このため、新しいベースレベルのカスタムモデルやカスタムタスクを構成するすべてのオプションは、このパラメーターと一緒に渡された場合、無視されます。 ただし、現時点ではまだこれらのパラメーターを含める必要があります。

オプション 必要な場合 タスクまたは推論モデル 説明
name 常時 両方 drum pushがカスタムモデルのタイトルとして使用する文字列で、検索を容易にするため、ユニークなものにすることが望ましいです。
type 常時 両方 training(カスタムタスク用)またはinference(カスタム推論モデル用)のいずれかの文字列です。
environmentID 常時 両方 カスタムモデルやカスタムタスクの実行中に使用する実行環境のハッシュです。 利用可能な実行環境の一覧は、モデルレジストリ > カスタムモデルワークショップ > 環境で確認できます。 環境を展開して、環境情報タブをクリックすると、ファイルIDが表示され、コピーできます。 drum pushの場合のみに必要です。
targetType 常時 両方 ターゲットのタイプを示す文字列です。 次のいずれかである必要があります:
binary
regression
anomaly
unstructured (推論モデルのみ)
multiclass
textgeneration(推論モデルのみ)
transform(変換タスクのみ)
modelID オプション 両方 モデルやタスクの作成後に、バージョン管理を使って反復しながらコードを追加することがベストプラクティスです。 新しいモデルやタスクの代わりに新しいバージョンを作成する場合は、このフィールドを使用して作成したカスタムのモデルやタスクをリンクします。 このID(ハッシュ)は、カスタムのモデルやタスクのURLを介して、UIから取得できます。 drum pushでのみ使用します。
description オプション 両方 検索可能なフィールドです。 modelIDが設定されている場合、モデルやタスクの説明の変更にはUIを使います。 drum pushでのみ使用します。
majorVersion オプション 両方 このパラメーターで、作成するモデルのバージョンをメジャー(True、デフォルト)または、マイナー(False)のどちらの更新バージョンにするか指定します。 たとえば、更新前のモデルのバージョンが2.3の場合、メジャーなら3.0、マイナーなら2.4の更新バージョンが作成されます。drum pushにのみ使用します。
targetName 常時 モデル inferenceModelでは、モデルが予測するデータ内の列を示す文字列。
positiveClassLabel / negativeClassLabel 二値分類モデル用 モデル inferenceModelでは、モデルが確率を予測する場合、positiveClassLabelは予測がどのクラスに対応するかを示します。
predictionThreshold オプション(二値分類モデルでのみ使用) モデル inferenceModelでは、予測ラベルとして選択されるラベルを示す、0と1の間のカットオフポイント。
trainOnProject オプション タスク モデルやバージョンのトレーニングを行う、プロジェクトID(PID)のハッシュ。 drum pushを使用してカスタム推定タスクのテストとアップロードを行う場合、DataRobotへの推定タスクのアップロードに成功した直後に、シングルタスクのブループリントをトレーニングするオプションを選択できます。 trainOnProjectオプションは、そのブループリントをトレーニングするプロジェクトを指定します。

model-metadata.yamlファイルでは、ランタイムパラメーターを定義して、カスタムモデルのコードを再利用しやすくすることもできます。


更新しました June 19, 2024