Skip to content

Click in-app to access the full platform documentation for your version of DataRobot.

Portable batch predictions

Portable batch predictions (PBP) let you score large amounts of data on disconnected environments.

Before you can use portable batch predictions, you need to configure the Portable Prediction Server (PPS), a DataRobot execution environment for DataRobot model packages (.mlpkg files) distributed as a self-contained Docker image. Portable batch predictions use the same Docker image as the PPS but run it in a different mode.

Availability information

The Portable Prediction Server is a feature exclusive to DataRobot MLOps. Contact your DataRobot representative for information on enabling it.

Scoring methods

Portable batch predictions can use the following adapters to score datasets:

  • Filesystem
  • JDBC
  • AWS S3
  • Azure Blob
  • GCS
  • Snowflake
  • Synapse

To run portable batch predictions, you need the following artifacts:

After you prepare these artifacts, you can run portable batch predictions. See also additional examples of running portable batch predictions.

Job definitions

You can define jobs using a JSON config file in which you describe prediction_endpoint, intake_settings, output_settings, timeseries_settings (optional) for time series scoring, and jdbc_settings (optional) for JDBC scoring.

Self-Managed AI Platform only: Prediction endpoint SSL configuration

If you need to disable SSL verification for the prediction_endpiont, you can set ALLOW_SELF_SIGNED_CERTS to True. This configuration disables SSL certificate verification for requests made by the application to the web server. This is useful if you have SSL encryption enabled on your cluster and are using certificates that are not signed by a globally trusted Certificate Authority (self-signed).

The prediction_endpoint describes how to access the PPS and is constructed as <schema>://<hostname>:<port>, where you define the following attributes:

Attribute Description
schema http or https
hostname The hostname of the instance where your PPS is running
port The port of the prediction API running inside the PPS

The jdbc_setting has the following attributes:

Attribute Description
url The URL to connect via the JDBC interface
class_name The class name used as an entry point for JDBC communication
driver_path The path to the JDBC driver on your filesystem (available inside the PBP container)
template_name The name of the template in case of write-back. To obtain the names of the support templates, please contact your DataRobot representative.

All other parameters are the same as regular Batch Predictions.

The following outlines a JDBC example that scores to and from Snowflake using single-mode PPS running locally and can be defined as a job_definition_jdbc.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "intake_settings": {
        "type": "jdbc",
        "table": "SCORING_DATA",
        "schema": "PUBLIC"
    },
    "output_settings": {
        "type": "jdbc",
        "table": "SCORED_DATA",
        "statement_type": "create_table",
        "schema": "PUBLIC"
    },
    "passthrough_columns_set": "all",
    "include_probabilities": true,
    "jdbc_settings": {
        "url": "jdbc:snowflake://my_account.snowflakecomputing.com/?warehouse=WH&db=DB&schema=PUBLIC",
        "class_name": "net.snowflake.client.jdbc.SnowflakeDriver",
        "driver_path": "/tmp/portable_batch_predictions/jdbc/snowflake-jdbc-3.12.0.jar",
        "template_name": "Snowflake"
    }
}

Credentials environment variables

If you are using JDBC or private containers in cloud storage, you can specify the required credentials as environment variables. The following table shows which variables names are used:

Name Type Description
AWS_ACCESS_KEY_ID string AWS Access key ID
AWS_SECRET_ACCESS_KEY string AWS Secret access key
AWS_SESSION_TOKEN string AWS token
GOOGLE_STORAGE_KEYFILE_PATH string Path to GCP credentials file
AZURE_CONNECTION_STRING string Azure connection string
JDBC_USERNAME string Username for JDBC
JDBC_PASSWORD string Password for JDBC
SNOWFLAKE_USERNAME string Username for Snowflake
SNOWFLAKE_PASSWORD string Password for Snowflake
SYNAPSE_USERNAME string Username for Azure Synapse
SYNAPSE_PASSWORD string Password for Azure Synapse

Here's an example of the credentials.env file used for JDBC scoring:

export JDBC_USERNAME=TEST_USER
export JDBC_PASSWORD=SECRET

Run portable batch predictions

Portable batch predictions run inside a Docker container. You need to mount job definitions, files, and datasets (if you are going to score from a host filesystem and set a path inside the container) onto Docker. Using a JDBC job definition and credentials from previous examples, the following outlines a complete example of how to start a portable batch predictions job to score to and from Snowflake.

docker run --rm \
    -v /host/filesystem/path/job_definition_jdbc.json:/docker/container/filesystem/path/job_definition_jdbc.json \
    --network host \
    --env-file /host/filesystem/path/credentials.env \
    datarobot-portable-predictions-api batch /docker/container/filesystem/path/job_definition_jdbc.json

Here is another example of how to run a complete end-to-end flow, including PPS and a write-back job status into the DataRobot platform for monitoring progress.

#!/bin/bash

# This snippet starts both the PPS service and PBP job using the same PPS docker image
# available from Developer Tools.

#################
# Configuration #
#################

# Specify path to directory with mlpkg(s) which you can download from deployment
MLPKG_DIR='/host/filesystem/path/mlpkgs'
# Specify job definition path
JOB_DEFINITION_PATH='/host/filesystem/path/job_definition.json'
# Specify path to file with credentials if needed (for cloud storage adapters or JDBC)
CREDENTIALS_PATH='/host/filesystem/path/credentials.env'
# For DataRobot integration, specify API host and Token
API_HOST='https://app.datarobot.com'
API_TOKEN='XXXXXXXX'

# Run PPS service in the background
PPS_CONTAINER_ID=$(docker run --rm -d -p 127.0.0.1:8080:8080 -v $MLPKG_DIR:/opt/ml/model datarobot/datarobot-portable-prediction-api:<version>)
# Wait some time before PPS starts up
sleep 15
# Run PPS in batch mode to start PBP job
docker run --rm -v $JOB_DEFINITION_PATH:/tmp/job_definition.json \
    --network host \
    --env-file $CREDENTIALS_PATH \
    datarobot/datarobot-portable-prediction-api:<version> batch /tmp/job_definition.json
        --api_host $API_HOST --api_token $API_TOKEN
# Stop PPS service
docker stop $PPS_CONTAINER_ID

More examples

In all of the following examples, assume that PPS is running locally on port 8080, and the filesystem structure has the following format:

/host/filesystem/path/portable_batch_predictions/
├── job_definition.json
├── credentials.env
├── datasets
|   └── intake_dataset.csv
├── output
└── jdbc
    └── snowflake-jdbc-3.12.0.jar

Filesystem scoring with single-model mode PPS

job_definition.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "intake_settings": {
        "type": "filesystem",
        "path": "/tmp/portable_batch_predictions/datasets/intake_dataset.csv"
    },
    "output_settings": {
        "type": "filesystem",
        "path": "/tmp/portable_batch_predictions/output/results.csv"
    }
}
#!/bin/bash

docker run --rm \
    --network host \
    -v /host/filesystem/path/portable_batch_predictions:/tmp/portable_batch_predictions \
    datarobot/datarobot-portable-prediction-api:<version> batch \
        /tmp/portable_batch_predictions/job_definition.json

Filesystem scoring with multi-model mode PPS

job_definition.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "deployment_id": "lending_club",
    "intake_settings": {
        "type": "filesystem",
        "path": "/tmp/portable_batch_predictions/datasets/intake_dataset.csv"
    },
    "output_settings": {
        "type": "filesystem",
        "path": "/tmp/portable_batch_predictions/output/results.csv"
    }
}
#!/bin/bash

docker run --rm \
    --network host \
    -v /host/filesystem/path/portable_batch_predictions:/tmp/portable_batch_predictions \
    datarobot/datarobot-portable-prediction-api:<version> batch \
        /tmp/portable_batch_predictions/job_definition.json

Filesystem scoring with multi-model mode PPS and integration with DR job status tracking

job_definition.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "deployment_id": "lending_club",
    "intake_settings": {
        "type": "filesystem",
        "path": "/tmp/portable_batch_predictions/datasets/intake_dataset.csv"
    },
    "output_settings": {
        "type": "filesystem",
        "path": "/tmp/portable_batch_predictions/output/results.csv"
    }
}

For the PPS MLPKG, in config.yaml, specify the deployment ID of the deployment for which you are running the portable batch prediction job.

#!/bin/bash

docker run --rm \
    --network host
    -v /host/filesystem/path/portable_batch_predictions:/tmp/portable_batch_predictions \
    datarobot/datarobot-portable-prediction-api:<version> batch \
        /tmp/portable_batch_predictions/job_definition.json \
        --api_host https://app.datarobot.com --api_token XXXXXXXXXXXXXXXXXXX

JDBC scoring with single-model mode PPS

job_definition.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "deployment_id": "lending_club",
    "intake_settings": {
        "type": "jdbc",
        "table": "INTAKE_TABLE"
    },
    "output_settings": {
        "type": "jdbc",
        "table": "OUTPUT_TABLE",
        "statement_type": "create_table"
    },
    "passthrough_columns_set": "all",
    "include_probabilities": true,
    "jdbc_settings": {
        "url": "jdbc:snowflake://your_account.snowflakecomputing.com/?warehouse=SOME_WH&db=MY_DB&schema=MY_SCHEMA",
        "class_name": "net.snowflake.client.jdbc.SnowflakeDriver",
        "driver_path": "/tmp/portable_batch_predictions/jdbc/snowflake-jdbc-3.12.0.jar",
        "template_name": "Snowflake"
    }
}

credentials.env file:

JDBC_USERNAME=TEST
JDBC_PASSWORD=SECRET
#!/bin/bash

docker run --rm \
    --network host \
    -v /host/filesystem/path/portable_batch_predictions:/tmp/portable_batch_predictions \
    --env-file /host/filesystem/path/credentials.env \
    datarobot/datarobot-portable-prediction-api:<version> batch \
        /tmp/portable_batch_predictions/job_definition.json

S3 scoring with single-model mode PPS

job_definition.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "intake_settings": {
        "type": "s3",
        "url": "s3://intake/dataset.csv",
        "format": "csv"
    },
    "output_settings": {
        "type": "s3",
        "url": "s3://output/result.csv",
        "format": "csv"
    }
}

credentials.env file:

AWS_ACCESS_KEY_ID=XXXXXXXXXXXX
AWS_SECRET_ACCESS_KEY=XXXXXXXXXXX
#!/bin/bash

docker run --rm \
    --network host \
    -v /host/filesystem/path/portable_batch_predictions:/tmp/portable_batch_predictions \
    --env-file /path/to/credentials.env \
    datarobot/datarobot-portable-prediction-api:<version> batch \
        /tmp/portable_batch_predictions/job_definition.json

Snowflake scoring with multi-model mode PPS

job_definition.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "deployment_id": "lending_club",
    "intake_settings": {
        "type": "snowflake",
        "table": "INTAKE_TABLE",
        "schema": "MY_SCHEMA",
        "external_stage": "MY_S3_STAGE_IN_SNOWFLAKE"
    },
    "output_settings": {
        "type": "snowflake",
        "table": "OUTPUT_TABLE",
        "schema": "MY_SCHEMA",
        "external_stage": "MY_S3_STAGE_IN_SNOWFLAKE",
        "statement_type": "insert"
    },
    "passthrough_columns_set": "all",
    "include_probabilities": true,
    "jdbc_settings": {
        "url": "jdbc:snowflake://your_account.snowflakecomputing.com/?warehouse=SOME_WH&db=MY_DB&schema=MY_SCHEMA"
        "class_name": "net.snowflake.client.jdbc.SnowflakeDriver",
        "driver_path": "/tmp/portable_batch_predictions/jdbc/snowflake-jdbc-3.12.0.jar",
        "template_name": "Snowflake"
    }
}

credentials.env file:

# Snowflake creds for JDBC connectivity
SNOWFLAKE_USERNAME=TEST
SNOWFLAKE_PASSWORD=SECRET
# AWS creds needed to access external stage
AWS_ACCESS_KEY_ID=XXXXXXXXXXXX
AWS_SECRET_ACCESS_KEY=XXXXXXXXXXX
#!/bin/bash

docker run --rm \
    --network host \
    -v /host/filesystem/path/portable_batch_predictions:/tmp/portable_batch_predictions \
    --env-file /host/filesystem/path/credentials.env \
    datarobot/datarobot-portable-prediction-api:<version> batch \
        /tmp/portable_batch_predictions/job_definition.json

Time series scoring over Azure Blob with multi-model mode PPS

job_definition.json file:

{
    "prediction_endpoint": "http://127.0.0.1:8080",
    "deployment_id": "euro_date_ts_mlpkg",
    "intake_settings": {
        "type": "azure",
        "url": "https://batchpredictionsdev.blob.core.windows.net/datasets/euro_date.csv",
        "format": "csv"
    },
    "output_settings": {
        "type": "azure",
        "url": "https://batchpredictionsdev.blob.core.windows.net/results/output_ts.csv",
        "format": "csv"
    },
    "timeseries_settings":{
        "type": "forecast",
        "forecast_point": "2007-11-14",
        "relax_known_in_advance_features_check": true
    }
}

credentials.env file:

# Azure Blob connection string
AZURE_CONNECTION_STRING='DefaultEndpointsProtocol=https;AccountName=myaccount;AccountKey=XXX;EndpointSuffix=core.windows.net'
#!/bin/bash

docker run --rm \
    --network host \
    -v /host/filesystem/path/portable_batch_predictions:/tmp/portable_batch_predictions
    --env-file /host/filesystem/path/credentials.env
    datarobot/datarobot-portable-prediction-api:<version> batch \
        /tmp/portable_batch_predictions/job_definition.json

Updated July 12, 2023
Back to top