Skip to content

アプリケーション内で をクリックすると、お使いのDataRobotバージョンに関する全プラットフォームドキュメントにアクセスできます。

レジストリ内のグローバルモデルにアクセスする

本機能の提供について

グローバルモデルはプレミアム機能です。 この機能を有効にする方法については、DataRobotの担当者または管理者にお問い合わせください。

予測ユースケースや生成ユースケースで、事前にトレーニングされたグローバルモデルをデプロイします。 これらの高品質でオープンソースのモデルは、トレーニング済みですぐにデプロイできるため、DataRobotのインストール後すぐに予測を行うことができます。 LLMのユースケースには、プロンプトインジェクション、毒性、センチメントを識別する分類器や、拒否スコアを出力するリグレッサーが用意されています。

グローバルモデルの利用可能性

DataRobotが作成したグローバルモデルは、すべてのユーザーが利用できます。 管理者が作成したグローバルモデルは、以下のルールに基づいて使用できます。

  • 組織管理者 がグローバルモデルを作成する場合、そのグローバルモデルは、組織内のすべてのユーザーが使用できます。
  • プラットフォーム管理者 がグローバルモデルを作成する場合、そのDataRobotプラットフォームインスタンスのすべてのユーザーが使用できます。

グローバルモデルの編集権限があるのは管理者のみです。 デプロイされたグローバルモデルは、デプロイの共有ルールに従います。

レジストリ > モデルディレクトリページでグローバルモデルを識別するには、グローバル列を見つけて、 はいのモデルを探します。

レジストリ > モデルディレクトリページをフィルターして、グローバルモデルのみを一覧表示できます。 モデルを絞り込むをクリックし、グローバルモデルチェックボックスを選択して、フィルターを適用をクリックします。

次のグローバルモデルを使用できます。

モデル タイプ ターゲット 説明
プロンプトインジェクション分類器 二値 インジェクション テキストをプロンプトインジェクションまたは正当なものとして分類します。 このモデルには、分類するテキストを含むtextという名前の列が1つ必要です。 詳しくは、 deberta-v3-base-injectionモデルの詳細を参照してください。
毒性分類器 二値 毒性 テキストを有毒か無毒に分類します。 このモデルには、分類するテキストを含むtextという名前の列が1つ必要です。 詳しくは、 toxic-comment-modelの詳細を参照してください。
センチメント分類器 二値 センチメント テキストのセンチメントを肯定的か否定的に分類します。 このモデルには、分類するテキストを含むtextという名前の列が1つ必要です。 詳しくは、 distilbert-base-uncased-finetuned-sst-2-englishモデルの詳細を参照してください。
拒否スコア 連続値 ターゲット プロンプトがモデルに設定されている回答範囲を超えているために、LLMがクエリーへの回答を拒否したケースのリストと、入力を比較して、最大類似性スコアを出力します。
Presidio PII Detection 二値 contains_pii Detects and replaces Personally Identifiable Information (PII) in text. このモデルには、分類するテキストを含むtextという名前の列が1つ必要です。 The types of PII to detect can optionally be specified in a column, 'entities', as a comma-separated string. If this column is not specified, all supported entities will be detected. Entity types can be found in the PII entities supported by Presidio documentation.

In addition to the detection result, the model returns an anonymized_text column, containing an updated version of the input with detected PII replaced with placeholders.

For more information, see the Presidio: Data Protection and De-identification SDK documentation.
Zero-shot Classifier 二値 ターゲット Performs zero-shot classification on text with user-specified labels. This model requires classified text in a column named text and class labels as a comma-seperated string in a column named labels. It expects the same set of labels for all rows; therefore, the labels provided in the first row are used. 詳しくは、 deberta-v3-large-zeroshot-v1モデルの詳細を参照してください。
Pythonダミー二値分類 二値 ターゲット Positiveクラスでは、常に0.75となります。 詳しくは、 python3_dummy_binaryモデルの詳細を参照してください。

グローバルモデルフィルターをクリアするには、適用されたフィルター行で、グローバルフィルターバッジのxをクリックします。 すべてクリアをクリックして、適用されたすべてのフィルターを削除することもできます。


更新しました April 8, 2024